

Potenziare la medicina generale per migliorare PACTIVE ACCEING

1-6 ottobre 2018

Complesso Chia Laguna - Domus de Maria (CA)

Introduzione alla Spirometria

Dott. Roberto Marasso MMG Pneumologo Dott. Marzio Uberti MMG Pneumologo

CHIA 1 - 6 SETTEMBRE 2018

ON THE

CAPACITY OF THE LUNGS,

AND ON THE

RESPIRATORY FUNCTIONS,

WITH A VIEW OF ESTABLISHING A PRECISE AND EASY METHOD OF DETECTING DISEASE BY THE SPIROMETER.

BY JOHN HUTCHINSON, SURGEON.

COMMUNICATED BY GEORGE CURSHAM, M.D., ONE OF THE SEGRETARIES OF THE SOCIETY.

Received January 22nd-Read April 28th, 1846.

SPIROMETRIA

TEST FISIOLOGICO CHE MISURA COME UN SOGGETTO INSPIRA ED ESPIRA VOLUMI DI ARIA IN FUNZIONE DEL TEMPO

il segnale primario misurato può essere il Tempo o il Volume

SPIROMETRIA SEMPLICE

SPIROMETRIA GLOBALE

LENTA FORZATA

EFFETTUABILE IN MEDICINA GENERALE

MISURAZIONE DEI VOLUMI PLETISMOGRAFIA METODICHE DI DILUIZIONE DEI GAS

SPIROMETRIA: ESPRESSIONE SEMPLICE DI MECCANISMI COMPLESSI

PRESSIONE SANGUIGNA

Sfigmomanometro

- **> 120/80**
- **≻** Gittata cardiaca
- > Resistenze vascolari
- > Volume sanguigno
- > Viscosità ematica
- > Asse renina-angiotensina

FUNZIONE RESPIRATORIA

Spirometro

- \geq 3.0 FEV₁ / 4.0 FVC
- > Ritorno elastico
- Resistenze aeree
- Piccole vie aeree
- > Interdipendenza
- Sforzo muscolare, coordinazione, ecc-

INDICAZIONI DELLA SPIROMETRIA

DIAGNOSI

- ➤ Valutazione di sintomi (dispnea, wheezing, ortopnea, tosse, produzione di muco, dolore toracico).
- > Valutazione di segni (espirazione prolungata, sibili, riduzione dei suoni respiratori, iperinsufflazione, cianosi, deformità toraciche).
- ➤ Valutazione di test di laboratorio anomali (ipossia, ipercapnia, policitemia, Rx torace anormale).
- Misurazione delle alterazioni funzionali conseguenti a malattie.
- Screening dei fumatori.
- Screening di individui a rischio di malattie professionali.
- Valutazione dei rischi in fase preoperatoria.
- Valutazione della prognosi (trapianto polmonare, ecc.).
- Valutazione della funzionalità respiratoria nell'attività sportiva.

INDICAZIONI DELLA SPIROMETRIA

MONITORAGGIO

- ➤ Valutazione degli interventi terapeutici (broncodilatatori, steroidi, antibiotici nella fibrosi cistica, trattamento dell'insufficienza cardiaca)
- ➤ Valutazione dell'evoluzione del danno funzionale in malattie che producono alterazione della funzione respiratoria (cardiache, polmonari, neuromuscolari, reumatologiche).
- ➤ Monitoraggio dei soggetti esposti ad agenti o farmaci tossici o nocivi.

INDICAZONI DELLA SPIROMETRIA

Valutazioni medico-legali

- ➤ Medicina dello sport, del lavoro, delle assicurazioni.
- ➤ Cause legali.

≻Salute pubblica

- ➤ Studi epidemiologici.
- ➤ Derivazione dei valori spirometrici di riferimento.

CONTROINDICAZIONI

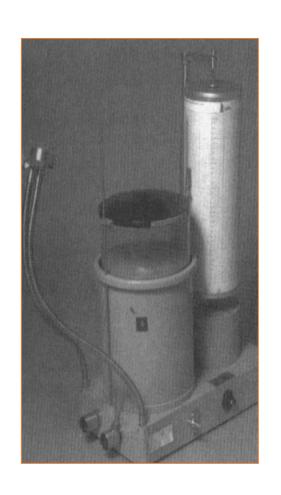
- > emoftoe di origine ignota (l'espirazione forzata potrebbe peggiorare la malattia sottostante)
- > pneumotorace
- patologie cardiovascolari instabili (potrebbe esserci un aumento pressorio o peggiorare un'angina) o infarto miocardico o embolia polmonare recenti.
- > aneurismi toracici, addominali o cerebrali (pericolo di rottura per l'aumento di pressione toracica)
- >chirurgia oculare recente (cataratta, ecc.)
- malattie acute che possono interferire con la manovra (nausea, vomito, ecc.)
- > chirurgia toracica o addominale recente
- > paziente con storia di sincope in corso di espirazione forzata

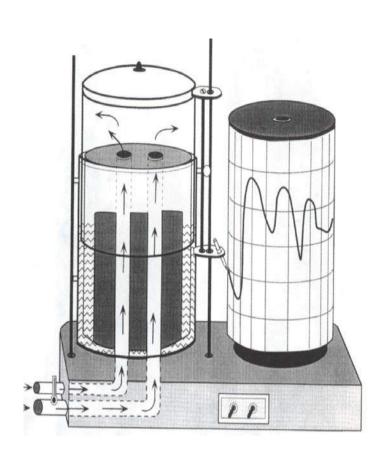
COMPLICAZIONI

- Pneumotorace
- >Aumento di pressione intracranica
- **➤** Sincope, dizziness, lieve cefalea
- Dolore toracico
- > Tosse parossistica
- ➤Infezioni nosocomiali
- Desaturazione di ossigeno quando venga interrotta la ossigenoterapia
- **≻**Broncospasmo

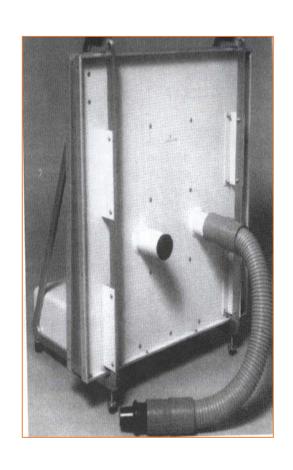
LIMITAZIONI DELLA SPIROMETRIA

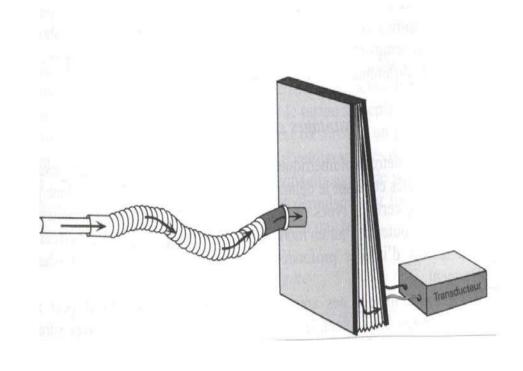
- le misurazioni ottenute con la spirometria sono limitate all'aspetto ventilatorio della respirazione; non si possono ottenere informazioni su processi quali la ventilazione regionale o il rapporto Ventilazione/Perfusione
- la normalità della spirometria non esclude la presenza di malattie polmonari anche gravi (es. malattie vascolari del polmone)
- ➢ la spirometria fornisce informazioni sull'entità delle alterazioni della funzione ventilatoria causate da malattie polmonari ed extrapolmonari ma non sull'eziologia delle alterazioni stesse e quindi i suoi risultati debbono sempre essere interpretati in base ai dati clinici



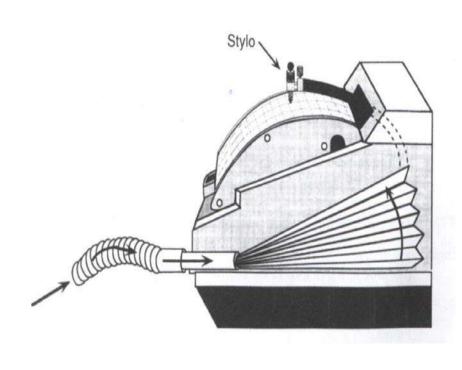

LO SPIROMETRO

SPIROMETRI VOLUMETR

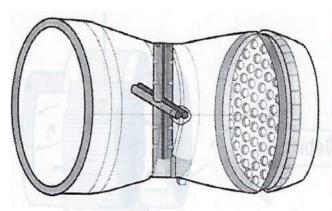


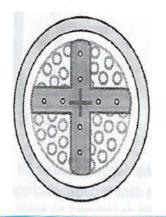

A CAMPANA

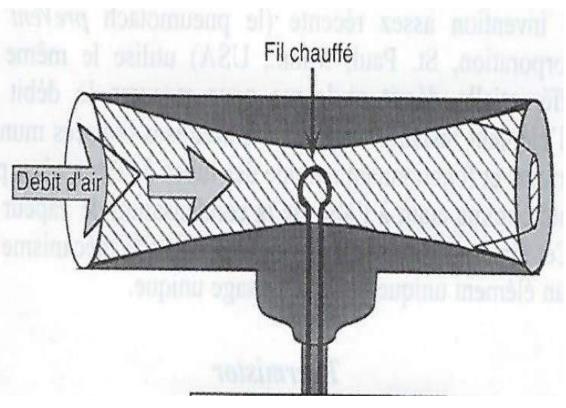
SPIROMETRI VOLUMETRICI


A PISTONE

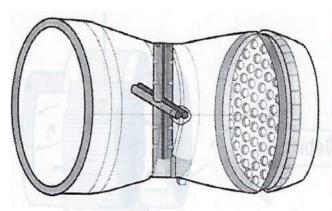
SPIROMETRI VOLUMETR

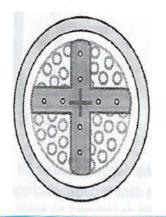


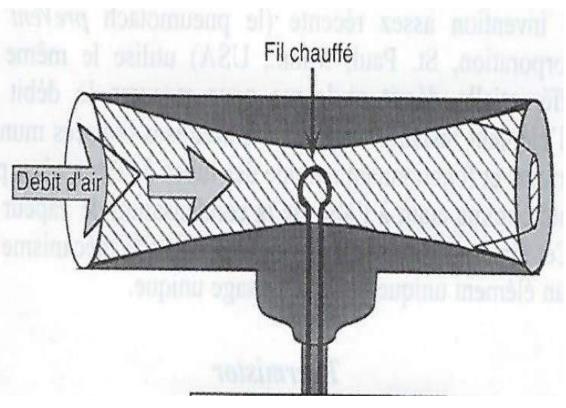

A SOFFIETTO



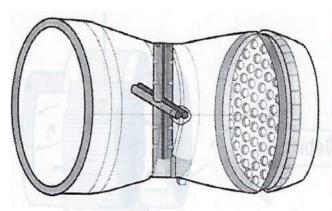
VISTA LATERALE

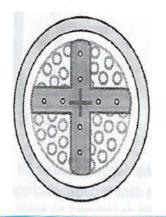


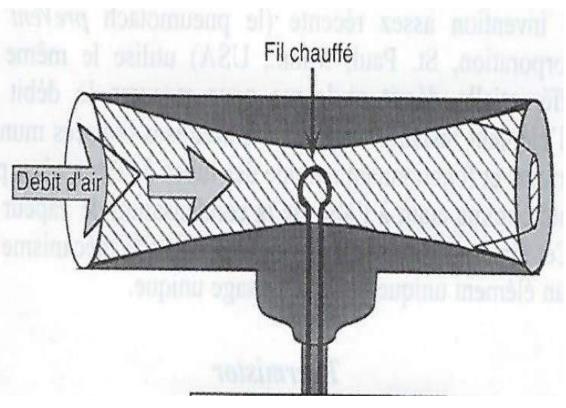

A TERMISTORE



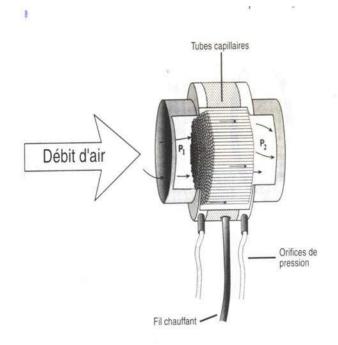
VISTA LATERALE




A TERMISTORE

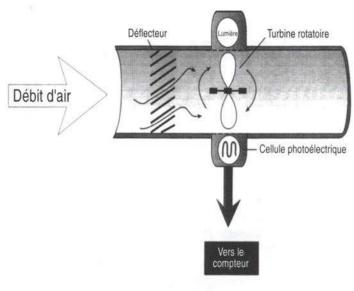


VISTA LATERALE



A TERMISTORE

PNEUMOTACOGRAFO


A TURBINA

A TURBINA

FONTI DI VARIABILITA' DELLE MISURE SPIROMETRICHE

TECNICHE

strumentazione procedure di misurazione paziente operatore interazione VARIABILITA' INTRA-INVIDUALE

postura sforzo espiratorio ritmo circadiano

VARIABILITA' INTER-INDIVIDUALE

SOGGETTO

AMBIENTE

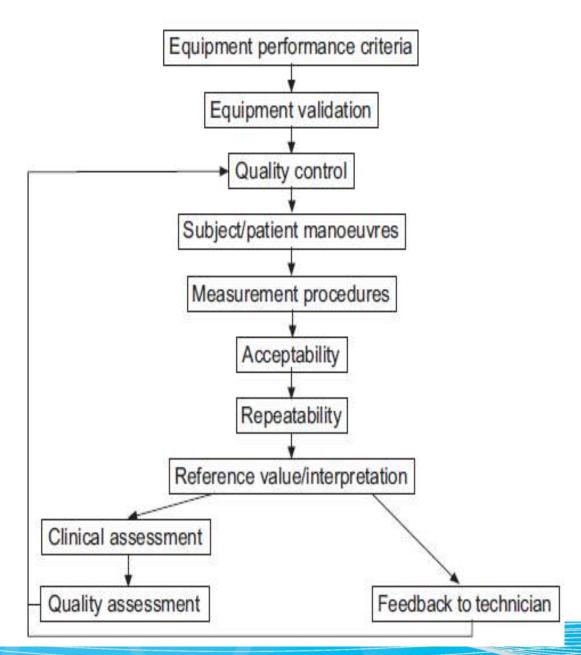
sesso
età
razza
altezza
condizioni patologiche pregresse e attuali

fattori geografici
esposizione ambientale
esposizione professionale
fumo di tabacco
condizioni socioeconomiche

Eur Respir J 2005; 26: 319-338 D0i: 10.1183/09031936.05.00034805 Copyright/cERS Journals Ltd 2005

SERIES "ATS/ERS TASK FORCE: STANDARDISATION OF LUNG FUNCTION TESTING"

Edited by V. Brusasco, R. Crapo and G. Viegi Number 2 in this Series


Standardisation of spirometry

M.R. Miller, J. Hankinson, V. Brusasco, F. Burgos, R. Casaburi, A. Coates, R. Crapo, P. Enright, C.P.M. van der Grinten, P. Gustafsson, R. Jensen, D.C. Johnson, N. MacIntyre, R. McKay, D. Navajas, O.F. Pedersen, R. Pellegrino, G. Viegi and J. Wanger

Insieme di procedure finalizzate alla riduzione della variabilità

STEP DI STANDARDIZZAZIONE DELLA SPIROMETRIA

➤ Caratteristiche e prestazioni e validazione dell'attrezzatura

- **≻**Controllo di qualità
- ➤ Effettuazione della prova: fattori legati al tecnico e al paziente

- Procedure di misurazione
- > Accettabilità
- > Riproducibilità
- ➤ Valori di riferimento, interpretazione del risultato
- > Valutazione clinica

CONTROLLO DI QUALITA'

L'attendibilità della prova è condizionata da due principali parametri:

- ➤ La accuratezza; cioè quanto la misurazione riflette i valori reali
- La precisione; cioè la variabilità (ripetibilità) di prove successive di uno stesso paziente; è indipendente dalla accuratezza e dipende dal paziente e dall'operatore

FATTORI CHE INCIDONO SULL'ACCURATEZZA

- > qualità della strumentazione
- > calibrazione e preparazione dello strumento
- > esperienza del personale
- >corretta esecuzione
- **≻**refertazione

TRAINING

Almeno 4 ore di training

Almeno 50 spirometrie effettuate e refertate correttamente

ALTRI PROBLEMI

>disinfezione dello strumento

>controllo delle infezioni

		L·s⁻¹		back pressure	
vc	0.5-8 L, ±3% of reading or	0–14	30		3-L Calibration syringe
	±0.050 L, whichever is greater				
FVC	0.5–8 L, \pm 3% of reading or	0–14	15	<1.5 cmH ₂ O·L ⁻¹ ·s ⁻¹	24 ATS waveforms,
	±0.050 L, whichever is greater			(0.15 kPa·L ⁻¹ ·s ⁻¹)	3-L Cal Syringe
FEV1	0.5-8 L, \pm 3% of reading or	0-14	1	<1.5 cmH ₂ O·L ⁻¹ ·s ⁻¹	24 ATS waveforms
	±0.050 L, whichever is greater			(0.15 kPa·L ⁻¹ ·s ⁻¹)	
Time zero	The time point from which			Back extrapolation	
	all FEV _t measurements are taken				
PEF	Accuracy: ±10% of reading or	0-14		Mean resistance at 200, 400,	26 ATS flow waveforms
	+0.30 L·s⁻¹ (20 L·min⁻¹), whichever is			600 L·min ⁻¹ (3.3, 6.7, 10 L·s ⁻¹)	
SP	grant re le mail il 💓 by c rear 🚓	S/ERS	PER S	600 L·min ⁻¹ (3.3, 6.7, 10 L·s ⁻¹) Priust R (2) (4) E·s ⁻¹ (0.25 kPa·l ⁻¹ ·s ⁻¹)	RI
	or ± 0.15 L·s ⁻¹ (10 L·min ⁻¹), whichever			(0.25 kPa·L ⁻¹ ·s ⁻¹)	
	is greater			11 11	
Instantaneous	Accuracy: ±5% of reading or	0-14		<1.5 cmH ₂ O·L ⁻¹ ·s ⁻¹	Data from manufacturers
flows (except PEF)	±0.200 L·s ⁻¹ , whichever is greater			(0.15 kPa·L ⁻¹ ·s ⁻¹)	
FEF25-75%	7.0 L·s ⁻¹ , ±5% of reading or	±14	15	Same as FEV1	24 ATS waveforms
	±0.200 L·s ⁻¹ , whichever is greater				
MVV	250 L•min⁻¹ at V⊤ of 2 L within	+14 (+3%)	12-15	<1.5 cmH ₂ O·L ⁻¹ ·s ⁻¹	Sine wave pump
	±10% of reading or ±15 L·min ⁻¹ ,			(0.15 kPa·L ⁻¹ ·s ⁻¹)	
	whichever is greater				

Flow range

Time s

Resistance and

Test signal

Test

Range/accuracy (BTPS)

of FVC; MVV: maximum voluntary ventilation; VT: tidal volume.

REQUISITI MINIMI ATS/ERS

- > tempo di registrazione ≥ 15 sec
- volume misurato ≥ 8 l
- > accuratezza ± 3% oppure ± 0.050 lt
- flussi misurati 0 14 lt/sec
- > accuratezza ± 5% oppure 0.2 lt/sec

Fattori minimi di scala raccomandati per il volume, il flusso ed il tempo nell'output grafico nel monitor del computer e nella copia cartacea

×.	Monitor	lel computer	Copia	cartacea	
Parametro	Risoluzione richiesta	Fattore di scala	Risoluzione richiesta	Fattore di scala	
Volume *	0.050 L	5 mm.L ⁻¹	0.025 L	10 mm.L ⁻¹	
Flusso *	0.200 L.s ⁻¹	2.5 mm.L ⁻¹ .s ⁻¹	0.100 L.s ⁻¹	5 mm.L ⁻¹ .s ⁻¹	
Tempo	0.2 s	10 mm.s ⁻¹	0.2 s	20 mm.s ⁻¹	

Test Report: MIR Spirolab II and Spirolab spirometers

Test Date: 14 July 2003

Page 4

Dynamic waveform testing results for the MIR Spirolab spirometer

The only difference between the MIR Spirolab spirometer and the Spirolab II spirometer is the display. We therefore tested the Spirolab spirometer with only six waveforms (waveforms 3,7,8,12,17, and 24) to assure there were no consequential differences between the two models.

Results: Mean FVC results for the listed waveforms are summarized below.

Waveform	3	7	8	12	17	24		
MIR Spirolab	3.372	3.126	1.938	1.936	5.764	1.198		
MIR Spirolab II	3.364	3.128	1.938	1.936	5.812	1.206		
Difference	0.008	0.002	0.000	0.000	0.048	0.008		
The average difference was 11 ml								

Summary: The performance of MIR Spirolab and MIR Spirolab II is essentially identical.

OVERALL SUMMARY

The MIR Spirolab and the MIR Spirolab II spirometers meet ATS recommendations for accuracy and precision in measuring FVC, FEV1, FEF25-75%, and peak expiratory flow under ambient and BTPS conditions.

The testing done in the LDS Hospital laboratory uses criteria published by the American Thoracic Society. Meeting the criteria does not imply endorsement or acceptance by the ATS.

Sincerely yours,

Robert O. Crapo, M.D.

Medical Director, Pulmonary Laboratory

Robert L. Jensen, Ph.D.

Staff Biophysicist, Pulmonary Division

Telephone:

801-408-1610

FAX:

801-408-1671 ldrcrapo@ihc.com

e-mail: file:

MIR Spirolab II.rpt2.doc

PREPARAZIONE DEL SOGGETTO

DATI ANTROPOMETRICI

- > SESSO
- > ALTEZZA
- > PESO
- > RAZZA

ALTEZZA

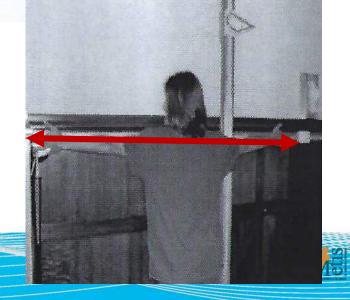
DOVREBBE ESSERE MISURATA AD OGNI ESAME

Soggetto senza scarpe
Posizione eretta: spalle dritte e piedi uniti
Sguardo orizzontale

In caso di impossibilità a mantenere la stazione eretta: apertura alare = distanza fra l'apice del medio delle due braccia

UN ERRORE DI 1 CM PUO' DETERMINARE UNA VARIAZIONE DEI VOLUMI MISURATI DELL'1% (adulti) e 2% (bambino)

SE NON E' POSSIBILE MISURARE IL SOGGETTO IN POSIZIONE ERETTA


 $Alt = 67.90 + 0.664182 \cdot AB - 2.816 \cdot Sex - 4.05 \cdot Race - 0.0709 \cdot Age$

Sex: 1 = M 2 = F

Race: 1= Caucasici 2=Neri

AB = apertura braccia in cm

Age: età in anni

CONDIZIONI PER LA RIUSCITA OTTIMALE DELLA SPIROMETRIA

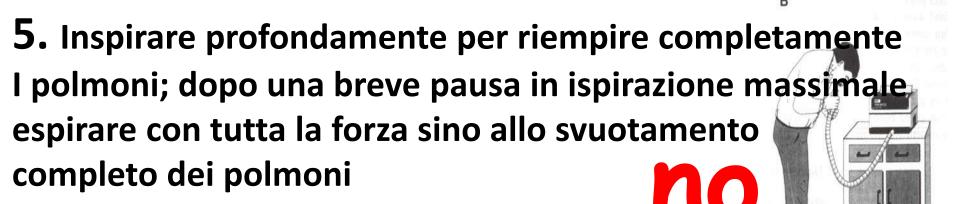
- > evitare sforzi intensi nei 30 minuti precedenti
- non fumare almeno 1 ora prima
- non aver consumato un pasto abbondante entro le due ore prima
- non bere alcool almeno 4 ore prima
- vescica vuota
- protesi dentarie (si se ben aderenti)

Controllare la calibrazione dello strumento e, se necessario, effettuarla

Spiegare dettagliatamente il test: finalità e modalità di effettuazione dell'esame

Interrogare il soggetto: informarsi su fumo, malattie recenti, uso di farmaci, ecc.

Istruire il paziente e mostrargli l'effettuazione del test


La prova deve essere eseguita preferibilmente da seduti, con i piedi sul pavimento, liberando eventuali costrizioni nell'abbigliamento.

- 1. Mettere uno stringinaso per evitare perdita di aria dal naso
- 2. Collegarsi al boccaglio sterile e stringerlo con forza tra le labbra per evitare perdite di aria dalla bocca
- 3. Mantenere il mento leggermente elevato ed il collo leggermente in estensione

4. Respirare tranquillamente per alcuni secondi (questa fase può essere saltata con spirometri portatili)

DURATA OTTIMALE DELL'APNEA AL TERMINE DELL'INSPIRAZIONE MASSIMALE

Effect of pattern of preceding inspiration on FEV1 in asthmatic children

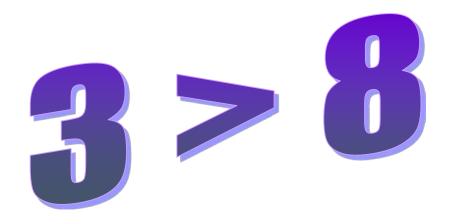
L. Sette*, G. Del Col**, A. Comis**, J. Milic-Emili+, A. Rossi++, A.L. Boner*

Parameter	Manoeuvre		
	No.1	No.2	No.3
FVC L % pred	2.76±0.66 121±36	2.67±0.58	2.52±0.52
FEV1 L % pred	2.25±0.53 108±32	2.22±0.53	2.07±0.44
FEV1/FVC % % pred	84±9 82±9	83±9	83±9

MANOVRA 1: rapida inspirazione con apnea di 2 sec

MANOVRA 2: rapida inspirazione senza apnea

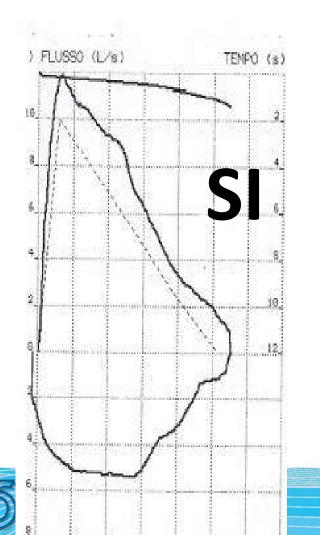
MANOVRA 3: inspirazione lenta (5 sec) con apnea di 4

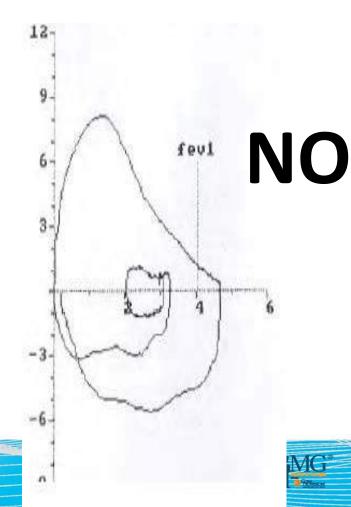

6. ulteriore inspirazione, profonda e rapida, per valutare i parametri inspiratori

7. ripetere l'esame fino ad ottenere tre prove accettabili e riproducibili secondo i criteri dell' American Thoracic Society

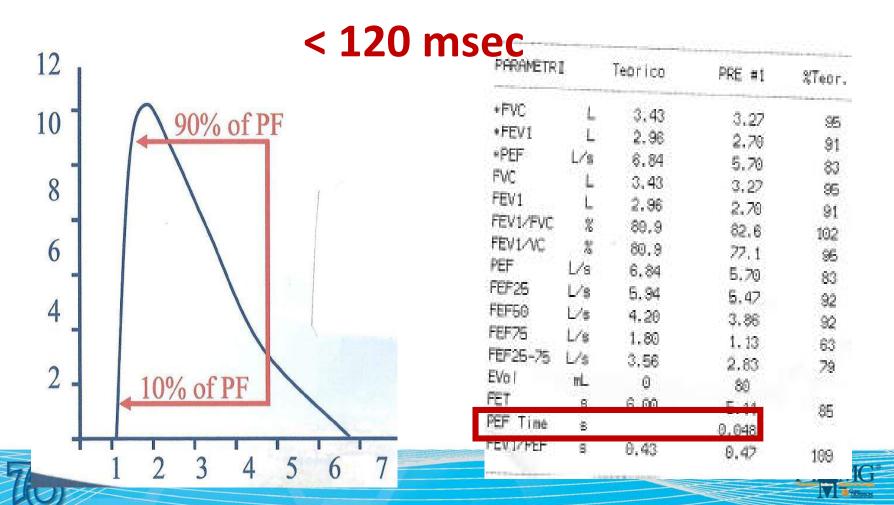
CRITERI ATS/ERS

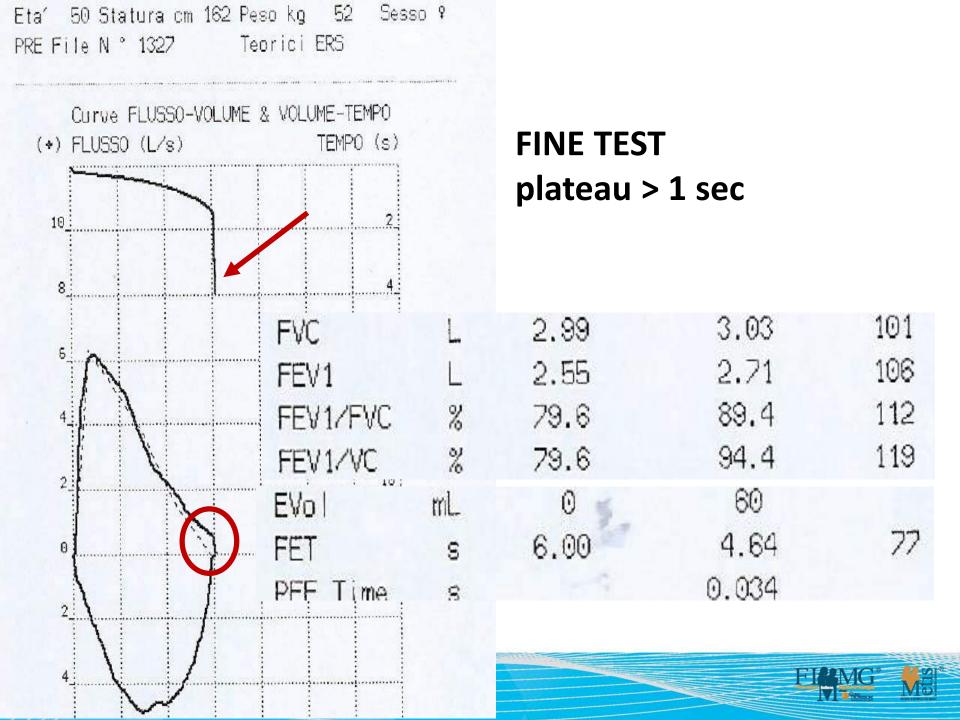
Effettuare un minimo di tre manovre accettabili, un massimo di otto


CRITERI DI ACCETTABILITA'	CONTROLLO DI QUALITÀ	
Inizio espirazione senza esitazioni	Volume estrapolato<5% dell' FVC o di 150 ml***	
Adeguato tempo di espirazione	Espirazione≥ 6 secondi* (Espirazione≥ 4 secondi in particolari casi; bambini, giovani adulti, deficit restrittivi)	
Espirazione completa	Il test deve concludersi con un plateau di almeno 1 secondo (a flusso costante< 0,03 l/sec)*	
Assenza di artefatti	Tosse, chiusura della glottide, sforzo variabile	
CRITERIO DI RIPRODUCIBILITA'	Almeno tre prove accettabili su un massimo di otto secondo il criterio che le due FVC e i due VEMS più elevati non differiscano più di 150 ml.	


*** Scegliere fra i due valori il maggiore; anche test non attendibili per FVC possono essere presi in considerazione per il FEV1

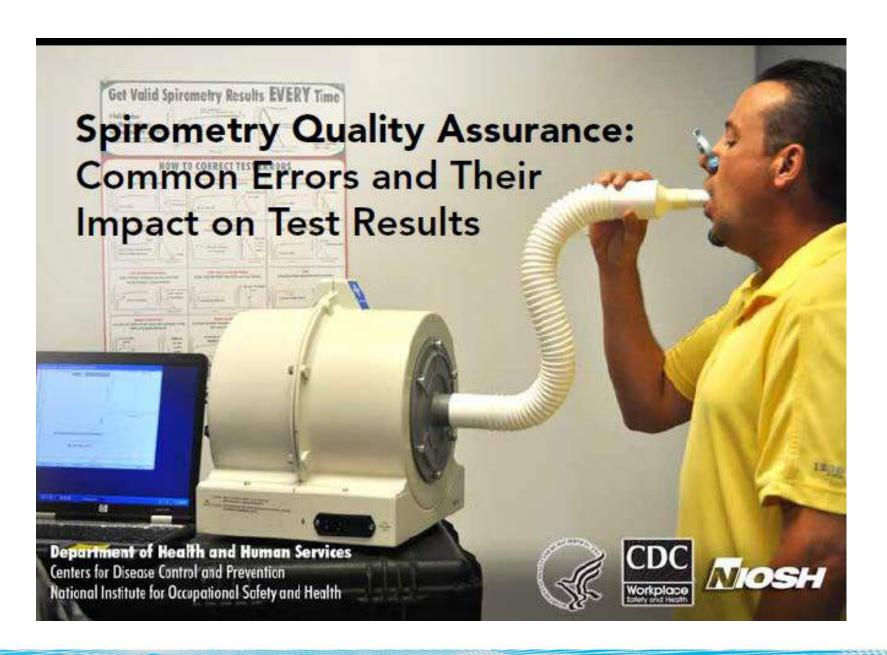
PARTENZA ESPLOSIVA


LA CURVA F/V DEVE CRESCERE IN MODO RAPIDO CON PEF BEN INDIVIDUABILE, APPUNTITO E NON ARROTONDITO



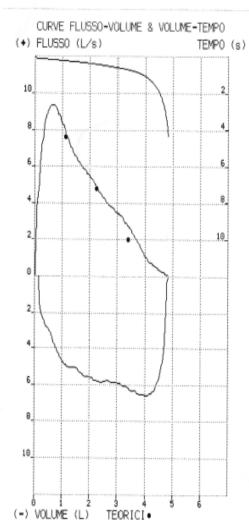
PARTENZA ESPLOSIVA

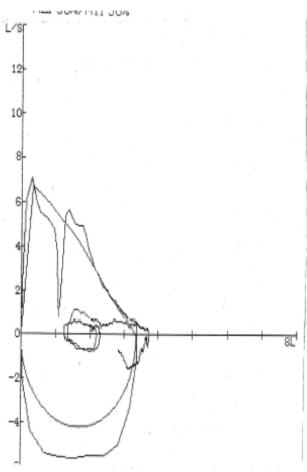
DtPEF (RITARDO DI VOLME AL RAGGIUNGIMENTO DEL PEF)
TEMPO NECESSARIO A PASSARE DAL 10% al 90% DEL PEF

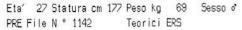


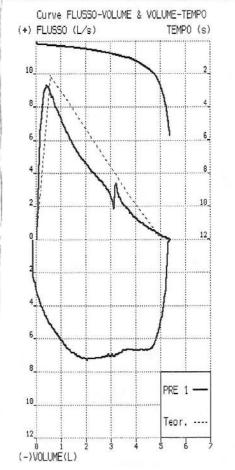
ARTEFATTI ED ERRORI COMUNI

- > INALAZIONE SUBMASSIMALE
- > VOLUME DI ESTRAPOLAZIONE ECCESSIVO
- > ESPIRAZIONE SUBMASSIMALE
- > TOSSE ENTRO IL PRIMO SECONDO
- > INTERRUZIONE PRECOCE
- > SFORZO VARIABILE
- > CHIUSURA DELLA GLOTTIDE
- > OSTRUZIONE PARZIALE DEL BOCCAGLIO
- > PERDITE
- > INSPIRAZIONI SUPPLEMENTARI


TOSSE ENTRO IL PRIMO SECONDO


ETA' 38 STATURA cm 170 SESSO & PESO Kg 80

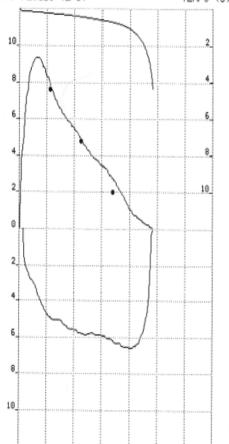

TEORICO ERS (ECCS) % TEORICO IN USO 100%


PRE FILE N° 47

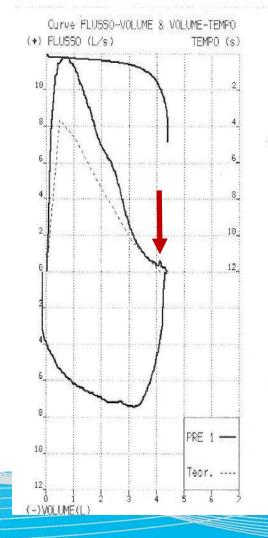
RAPPORTO SPIROMETRICO MIGLIOR TEST

TOSSE OLTRE IL PRIMO SECONDO

ETA' 38 STATURA cm 120 SESSO & PESO Kg 80

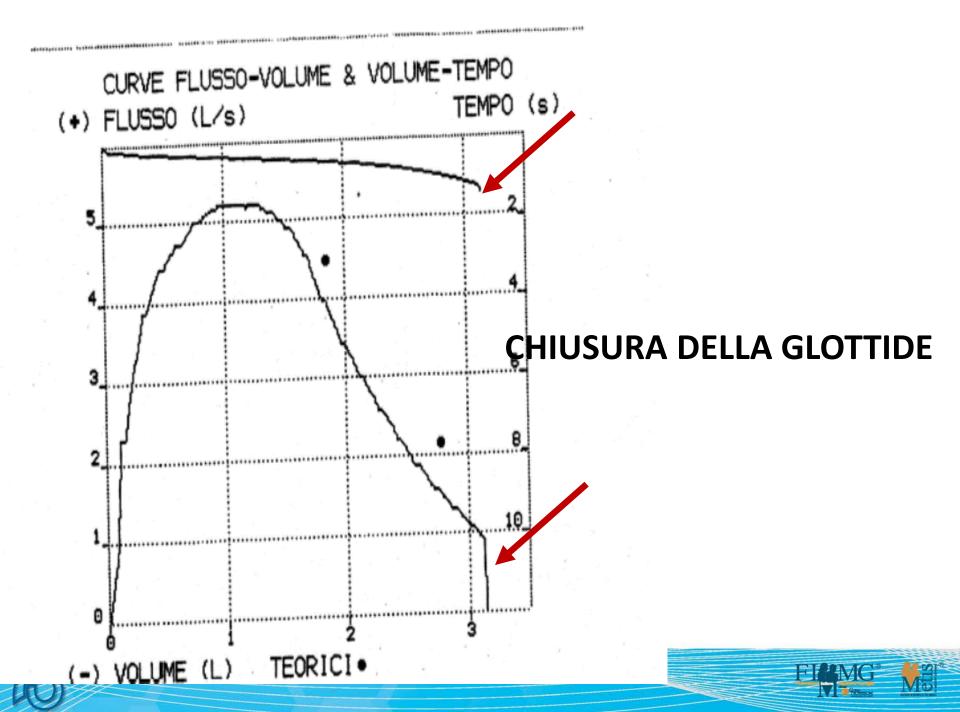

TEORICO ERS (ECCS) % TEORICO IN USO 100%

PRE FILE Nº 47

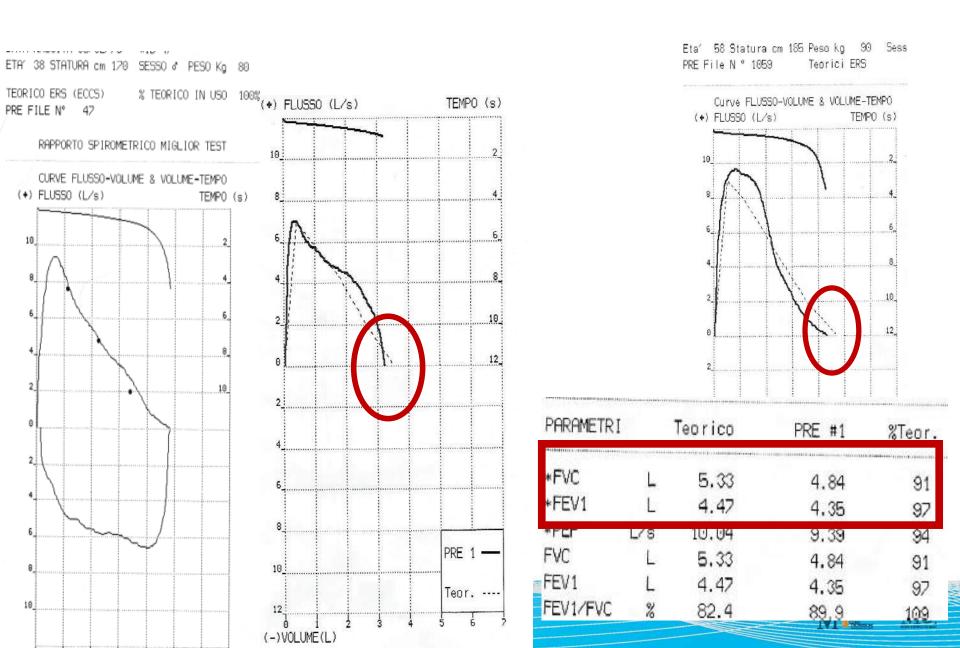

RAPPORTO SPIROMETRICO MIGLIOR TEST

CURVE FLUSSO-VOLUME & VOLUME-TEMPO

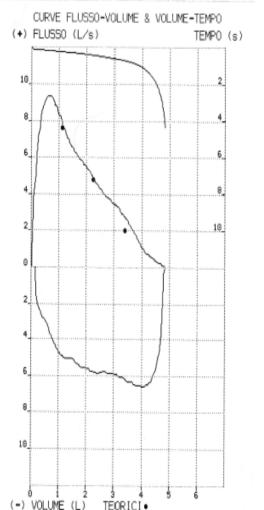
(+) FLUSSO (L/s) TEMPO (s)



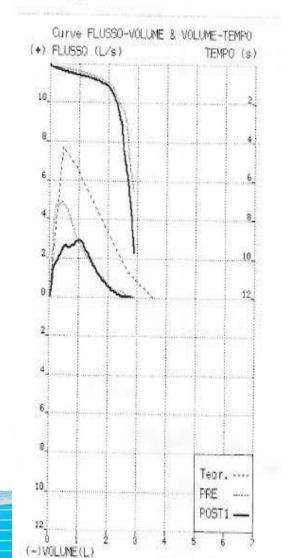
Data mascita 06/09/1956 #1D 0975*
Eta' 61 Statura cm 176 Peso kg 72 Sesso &
PRE File N * 1070 Teorici ERS



ESPIRAZIONE INCOMPLETA



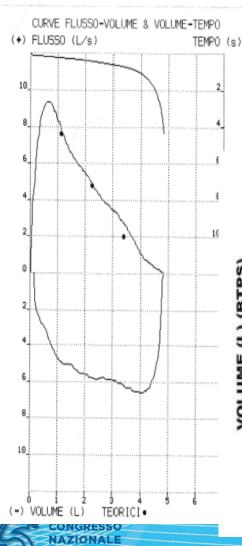
SFORZO SUBMASSIMALE

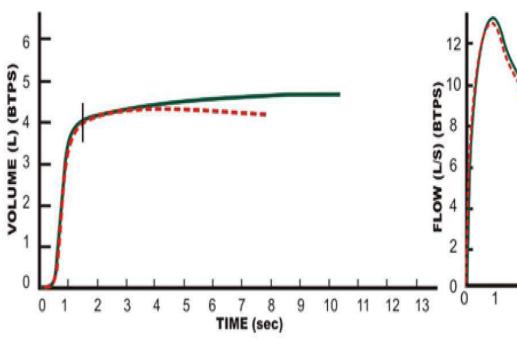

ETA' 38 STATURA cm 120 SESSO & PESO Kg 80

TEORICO ERS (ECCS) % TEORICO IN USO 100% PRE FILE N° 47

RAPPORTO SPIROMETRICO MIGLIOR TEST

Eta 60 Statura cm 165 Peso kg 63 Sesso & PRE File N ° 1120 POST File N ° 1121 Teorici ERS




ETA 38 STATURA cm 120 SESSO & PESO Kg 80

TEORICO ERS (ECCS) % TEORICO IN USO 100% PRE FILE N° 47

RAPPORTO SPIROMETRICO MIGLIOR TEST

PERDITA



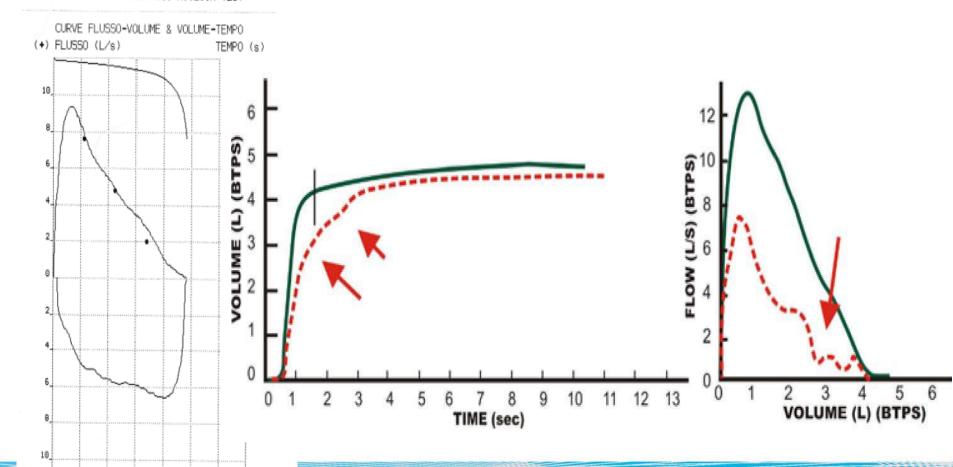
VOLUME (L) (BTPS)

3

2

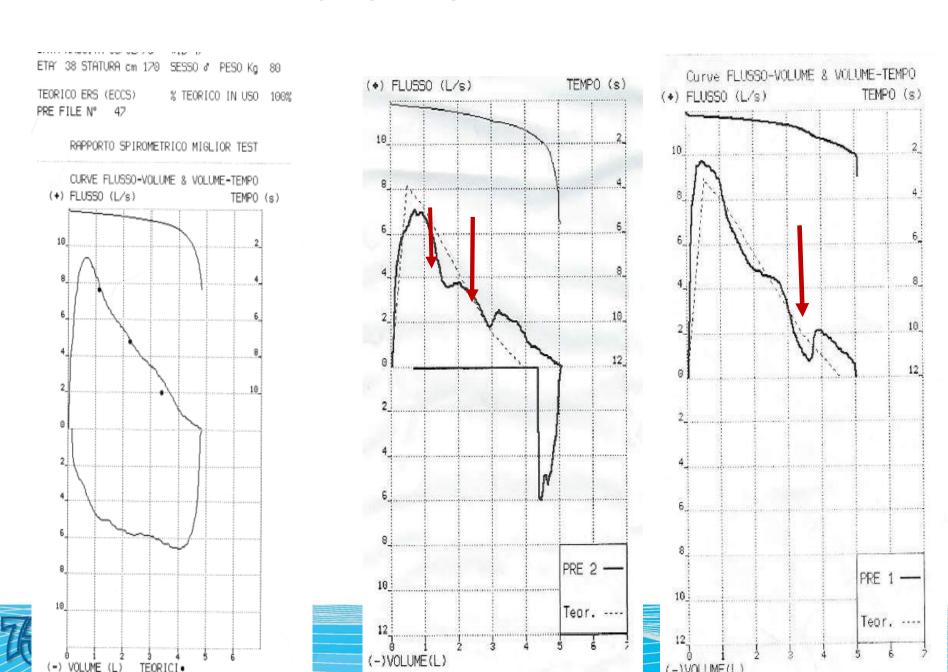
OSTRUZIONE DEL BOCCAGLIO

ETAY 38 STATURA cm 170 SESSO & PESO Kg 80


TEORICO ERS (ECCS)
PRE FILE N° 47

(=) VOLUME (L)

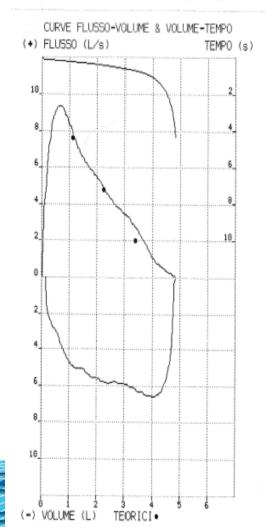
TEORICI •

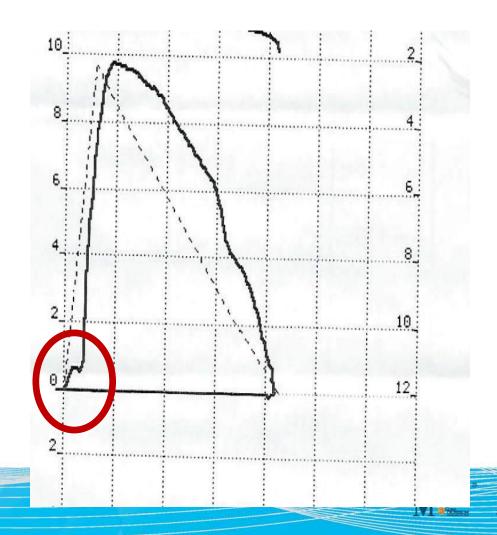

% TEORICO IN USO 100%

RAPPORTO SPIROMETRICO MIGLIOR TEST

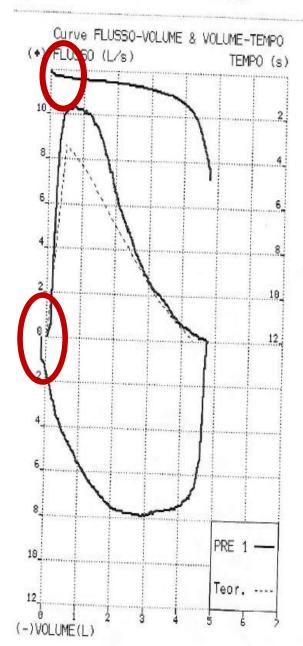
SFORZO VARIABILE

VOLUME DI ESTRAPOLAZIONE ECCESSIVO

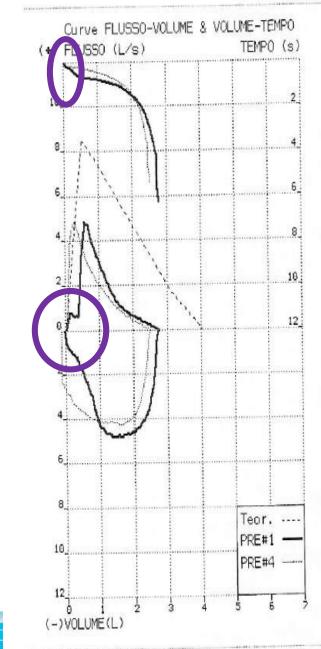

ETA' 38 STATURA cm 120 SESSO & PESO Kg 80


TEORICO ERS (ECCS)

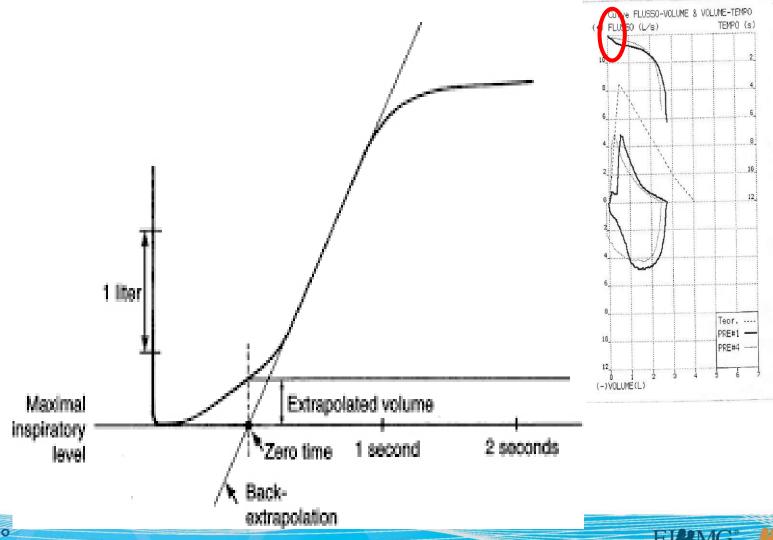
% TEORICO IN USO 100%

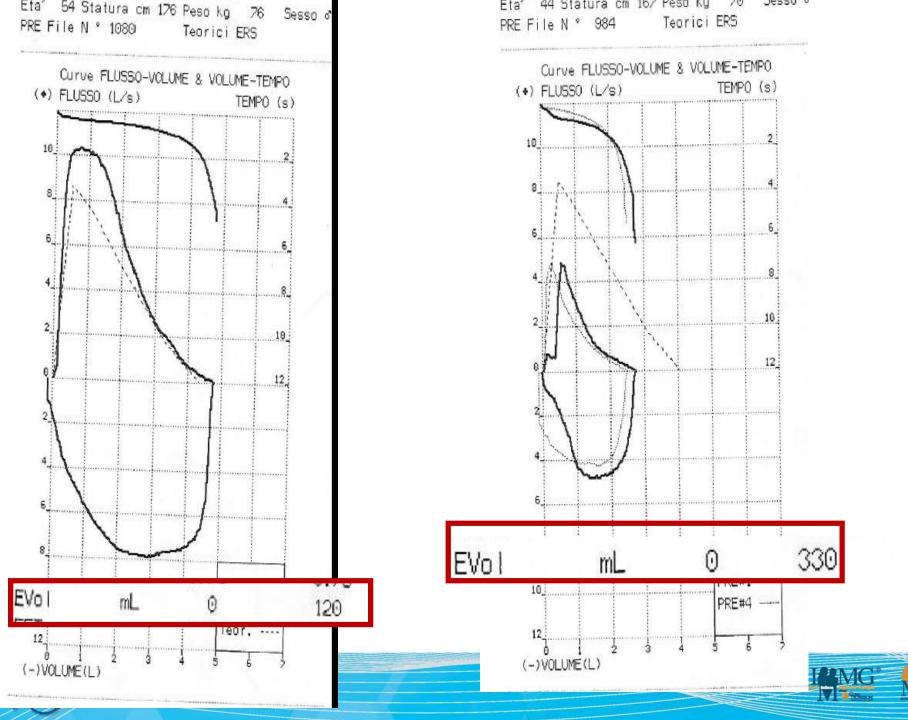

PRE FILE N° 47

RAPPORTO SPIROMETRICO MIGLIOR TEST



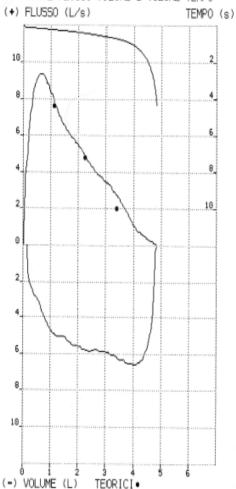
PRE File N ° 1080 Teorici ERS

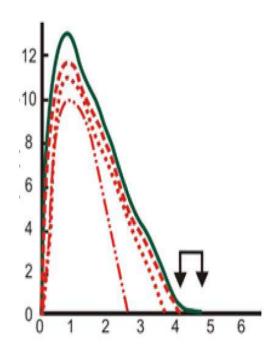

PRE File N° 984 Teorici ERS



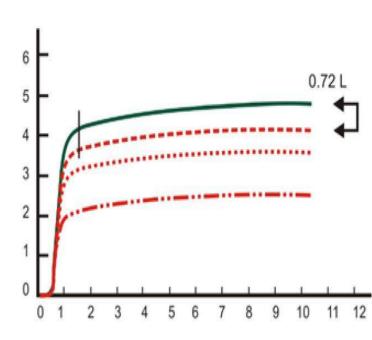
VOLUME DI ESTRAPOLAZIONE RETROGADA modalità di calcolo Data nascita 10/08/1972 #ID 0920* Eta* 44 Statura cm 167 Peso kg 79 Sesso d

INALAZIONE SUBMASSIMALE


ETA' 38 STATURA cm 120 SESSO & PESO Kg 80


TEORICO ERS (ECCS)
PRE FILE Nº 47

% TEORICO IN USO 100%


RAPPORTO SPIROMETRICO MIGLIOR TEST

CURVE FLUSSO-VOLUME & VOLUME-TEMPO

Spazio fra il termine di diverse Curve FV

Gap fra il plateau di diverse Curve VT

INALAZIONE SUBMASSIMALE

PEF

8.0

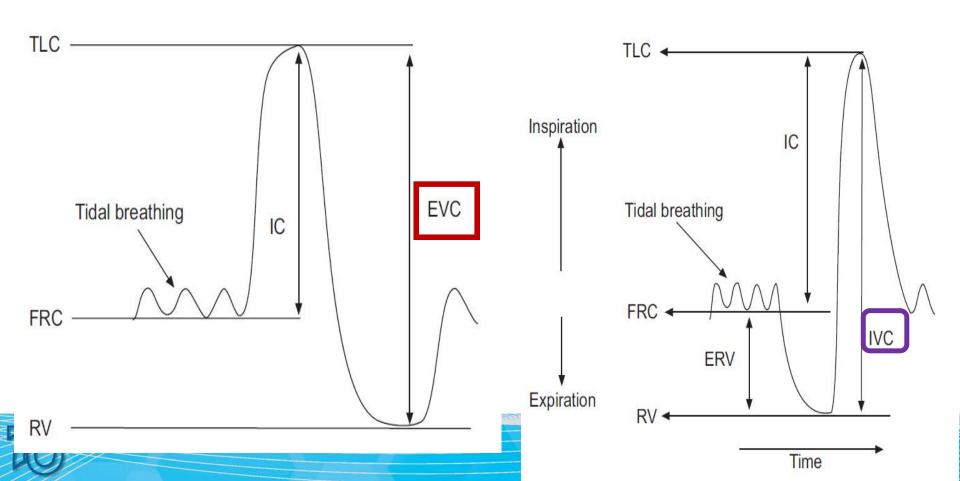
CAPACITA' VITALE LENTA

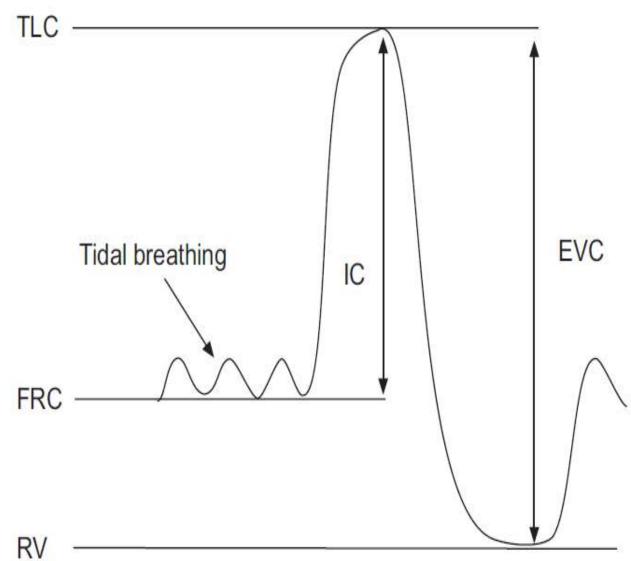
VARIAZIONE DI VOLUME MISURATA ALLA BOCCA FRA LA POSIZIONE DI MASSIMA INSPIRAZIONE E DI MASSIMA ESPIRAZIONE

PUO' ESSERE MISURATA COME:

CV LENTA ESPIRATORIA = MASSIMO VOLUME D'ARIA ESPIRATO DOPO UNA INSPIRAZIONE COMPLETA

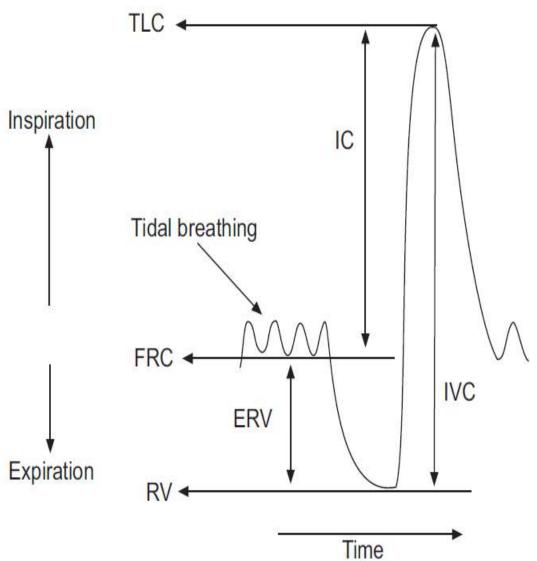
CV LENTA INSPIRATORIA = MASSIMO VOLUME D'ARIA INSPIRATO DOPO UNA ESPIRAZIONE COMPLETA




CAPACITA' VITALE LENTA

ESPIRATORIA

INSPIRATORIA


CAPACITA' VITALE LENTA ESPIRATORIA

CAPACITA' VITALE LENTA INSPIRATORIA

VC LENTA – CONTROLLO DI QUALITA'

- > CONSIGLIABILE ESEGUIRLA PRIMA DELLA FVC
- MASSIMO 4 PROVE

- ALMENO TRE PROVE ACCETTABILI E SENZA ARTEFATTI
- VARIABILITA' FRA LE MANOVRE < 150 ml</p>

IN SOGGETTI MOLTO OSTRUITI

FVC < VC

VC LENTA ESPIRATORIA < VC LENTA INSPIRATORIA

CRITERI DI RIPETIBILITA'

- ALMENO TRE PROVE ACCETTABILI SU UN MASSIMO DI OTTO
- LE DUE FVC E I DUE FEV1 PIU' ELEVATI NON DEBBONO DIFFERIRE DI PIU' DI 200 ml

CRITERI DI RIPRODUCIBILITA' NON RISPETTATI

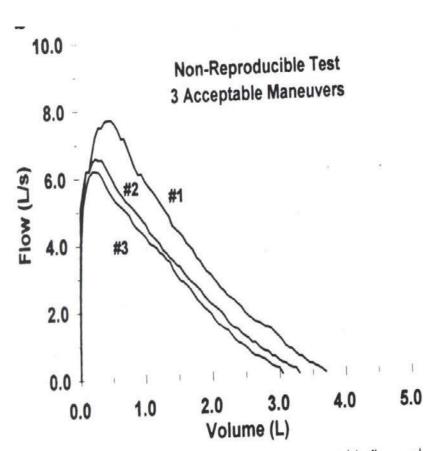


Figure A7b. Nonreproducible test with three acceptable flow-volume curves.

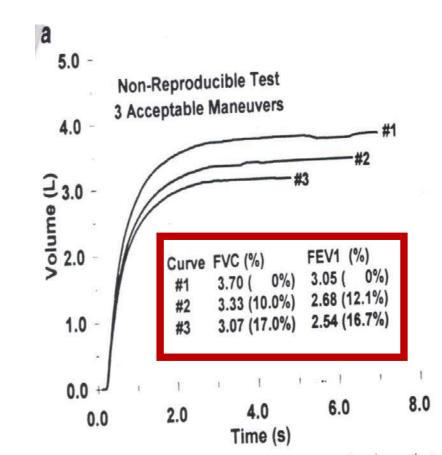


Figure A7a. Nonreproducible test with three acceptable volume–time curves. Percents are difference from largest value.

CRITERI DI RIPRODUCIBILITA' RISPETTATI

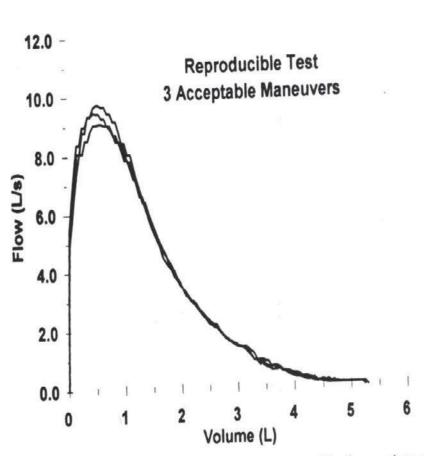


Figure A8b. Reproducible test with three acceptable flow-volume curves.

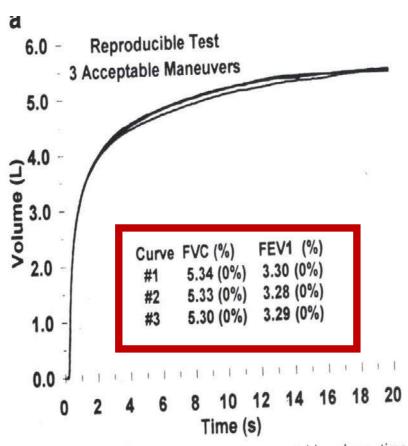
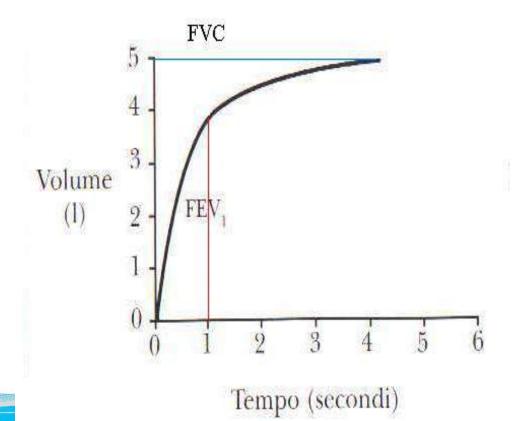


Figure A8a. Reproducible test with three acceptable volume-time curves. Percents are difference from largest value.

PARAMETRI SPIROMETRICI 1

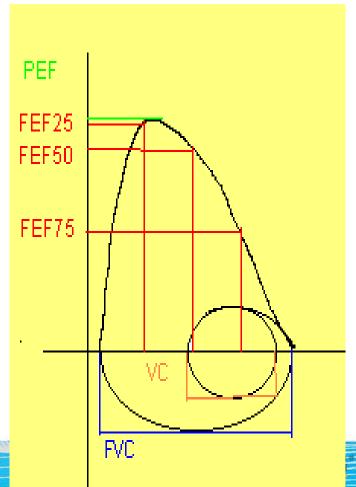
- FVC (Capacità Vitale Forzata): volume di aria espirato con una espirazione forzata dopo una inspirazione massimale
- FEV1 (o VEMS): volume massimo d'aria espirato nel primo secondo di una espirazione forzata dopo una inspirazione massimale
- > FEV1/FVC
- PEF: massimo flusso espiratorio durante una espirazione forzata dopo inspirazione massimale
- > FEFF 25-75%: flusso espiratorio forzato dal 25 al 75% della FVC.
- > FEF 25/50/75: flusso espiratorio massimo dopo il 25/50/75% della FVC



PARAMETRI SPIROMETRICI 2

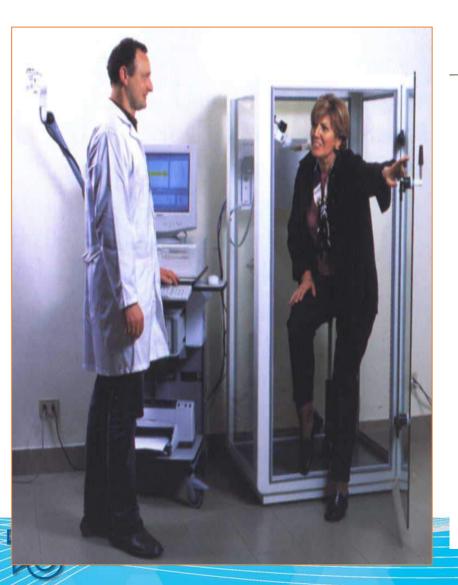
CURVA VOLUME/TEMPO

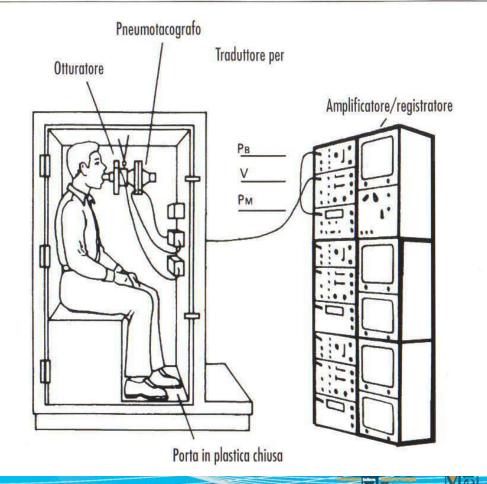
- VC
- •FEV1
- PEF
- •MEF 75/50/25
- FVC



PARAMETRI SPIROMETRICI 3 CURVA FLUSSO/VOLUME

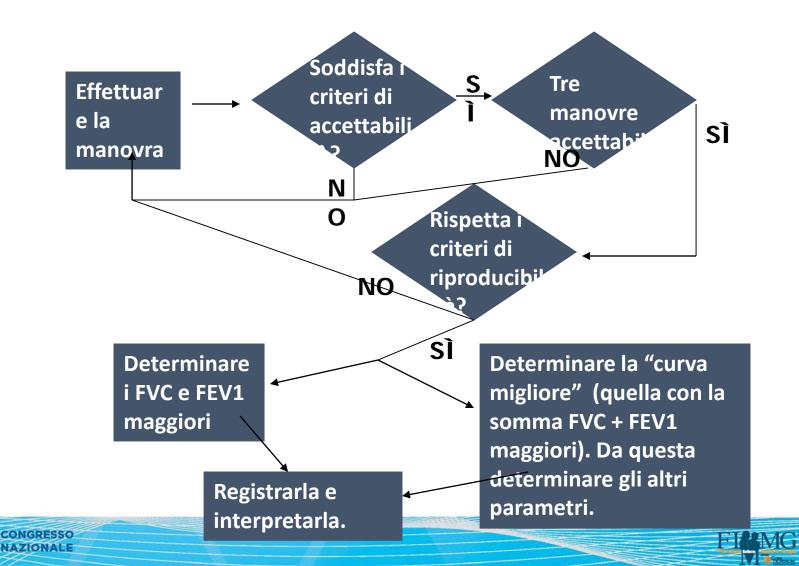
- •VC
- •FEV1
- PEF
- •FEF 75/50/25


PARAMETRI SPIROMETRICI (pletismografici)

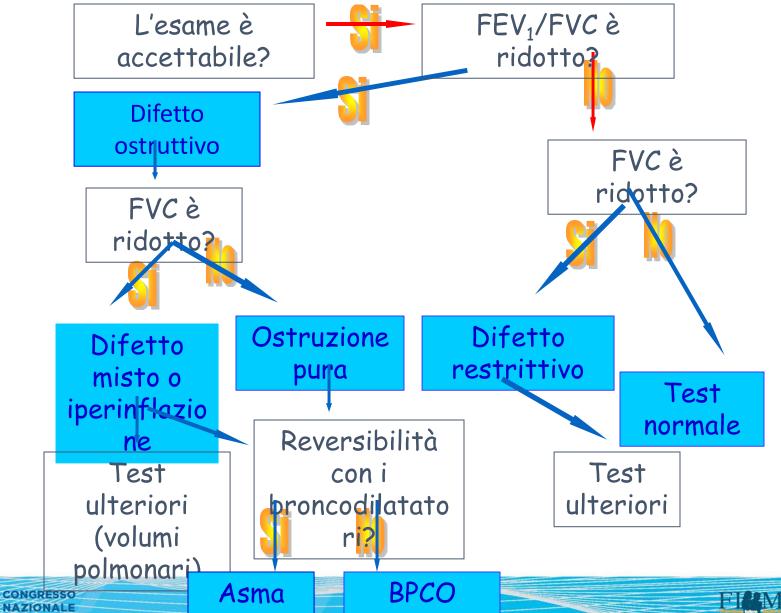

- ➤ VOLUME RESIDUO (RV): è il volume di gas che rimane nei polmoni alla fine di una espirazione forzata
- ➤ RESISTENZA DELLE VIE AEREE (Raw): è la differenza di pressione, tra l'inizio delle vie aeree (bocca) e la loro fine (alveoli). Indica la resistenza che l'aria incontra durante una respirazione tranquilla

CABINA PLETISMOGRAFICA

SEQUENZA DI VALUTAZIONE DELLA SPIROMETRIA

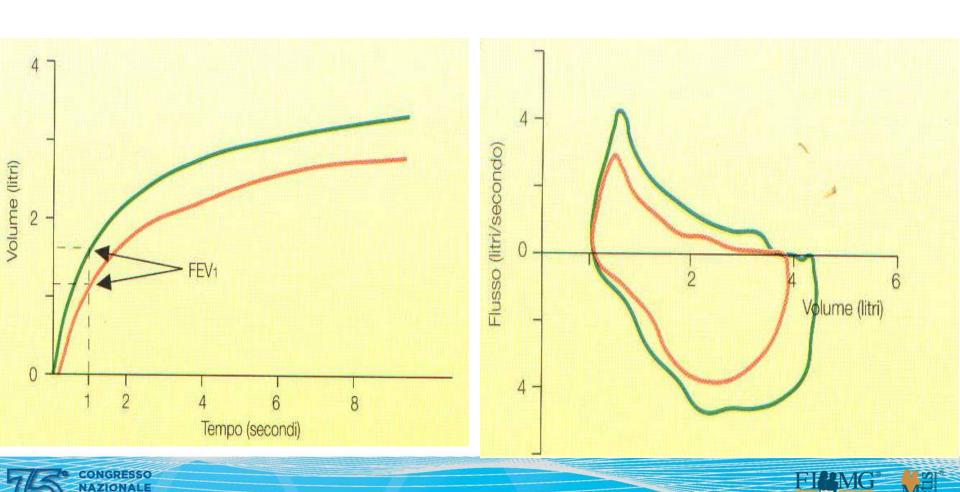

➤ Valutazione della morfologia delle Curve Volume-Tempo e Flusso-Volume per il riscontro di deficit funzionali e per il controllo di qualità della prova

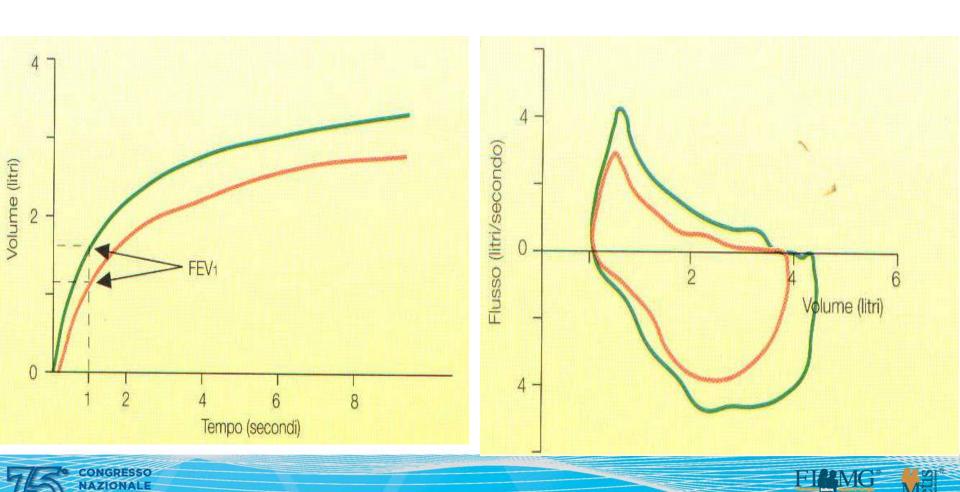
➤ Valutazione della Capacità Vitale (CV) e/o della Capacità Vitale Forzata (CVF): se inferiore al 5° percentile o al 80% del valore teorico indica un deficit restrittivo di vario grado



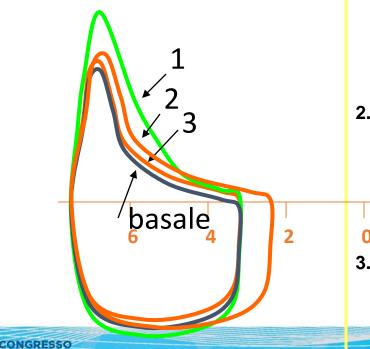
LETTURA DEI PARAMETRI

FLOW-CHART DI INTERPRETAZIONE DEL TRACCIATO SPIROMETRICO





TEST DI BRONCODILATAZIONE



TEST DI BRONCODILATAZIONE

VALUTAZIONE DELLA REVERSIBILITA' DELL'OSTRUZIONE

VAZIONALE

Dopo 20' dalla somministrazione di 200-400 mcg di beta 2 agonista o 80 mcg di anticolinergico si rivaluta il FEV1 con una manovra di espirazion e forzata.

Si possono verificare 3 possibilità:

- 1. il FEV1 aumenta di > 12% e 200 ml rispetto al basale tornando a valori normali (> 80% del predetto): DEFICIT VENTILATORIO DI TIPO OSTRUTTIVO COMPLETAMENTE REVERSIBILE. (tipica dell'Asma bronchiale)
- 2. il FEV1 è aumentato del 12% o di 200 ml rispetto al valore basale ma resta < 80% del teorico e VEMS/CVF < 70: DEFICIT VENTILATORIO DI TIPO OSTRUTTIVO PARZIALMENTE REVERSIBILE . (tipico della BPCO parzialmente reversibile)
- 3. il FEV1 aumenta < 12% o di 200 ml rispetto al valore basale: DEFICIT VENTILATORIO NON REVERSIBILE. (tipico della BPCO non reversibile)

INTERPRETAZIONE DEL TEST DI REVERSIBILITA'

TOTALMENTE REVERSIBILE

FEV1 aumenta di > 12% E 200 ml rispetto al basale FEV1 torna a valori normali (> 80% del predetto)

PARZIALMENTE REVERSIBILE

FEV1 aumenta del 12% O di 200 ml rispetto al basale FEV1 rimane < 80% del predetto

FEV1/FVC rimane < 0.7

IRREVERSIBILE

FEV1 aumenta meno del 12% o di 200 ml

LETTURA DEI TRACCIATI SPIROMETRICI

- 1. VALUTARE L'ACCETTABILITA'
- 2. MOTIVARE EVENTUALI CAUSE DI NON ACCETTABILITA'
- 3. REFERTARE

	FVC	FEV1	FEV1/FVC
NORMALE	NORMALE	NORMALE	NORMALE
OSTRUTTIVO	NORMALE O RIDOTTA	RIDOTTO	RIDOTTO
RESTRITTIVO	RIDOTTA	RIDOTTO	NORMALE
MISTO	RIDOTTA	RIDOTTO	RIDOTTO

CLASSIFICAZIONE DEFICIT DI TIPO OSTRUTTIVO

VEMS/FVC INFERIORE AL PREDETTO

VARIANTE FISIOLOGICA	VEMS > 100% del predetto
LIEVE	VEMS <100% e ≤ 70%
MODERATA	VEMS < 70% e ≥ 60% del predetto
MODERATAMEN TE GRAVE	VEMS < 60% e ≥ 50% del predetto
GRAVE	VEMS < 50% e ≥ 34% del predetto
MOLTO GRAVE	VEMS < 34% del predetto

American Thoracic Society. 1991. Lung function testing: selection of reference values and interpretative strategies. Am. Rev. Respir. Dis. 144:1202-1218.

STADIAZIONE GOLD DELLA BPCO

FEV1/FVC < 0.70

GOLD I LIEVE

GOLD II MODERATO

GOLD III GRAVE

GOLD IV MOLTO GRAVE

FEV1 ≥ 80% del predetto

50% ≤ FEV1 < 80 del predetto

30% ≤ **FEV1** < **50** del predetto

FEV1 < 30% del predetto

CLASSIFICAZIONE DEFICIT DI TIPO RESTRITTIVO

INDISPENSABILE CPT ***

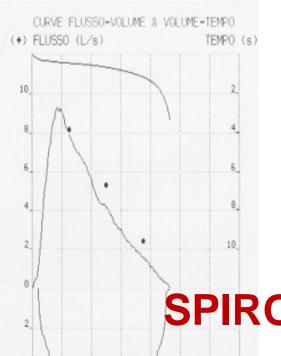
LIEVE	CV < del predetto ma ≥ 70%
MODERATA	CV 60-70% del predetto
MODERATAMENTE GRAVE	CV 50-60% del predetto
GRAVE	CV 50-34% del predetto
MOLTO GRAVE	CV < 34% del predetto

*** se la CPT non e' stata calcolata si considera la riduzione della CV e si parla di "restrizione dell'escursione volumetrica dei polmoni"

American Thoracic Society. 1991. Lung function testing: selection of reference values and interpretative strategies. Am. Rev. Respir. Dis. 144:1202-1218.

Volumi polmonari statici Interpretazione

Indici Funzionali	Insufficienza ventilatoria di tipo restrittivo	Insufficienza ventilatoria di tipo ostruttivo
VR <i>(RV)</i> Volume Residuo	Diminuito	Aumentato
CPT (TLC) Capacità Polmonare Totale	Diminuito in modo proporzionale alla VR	Normale o lievemente aumentato
VR/CPT % (RV/TLC%)	Normale	Aumentato


Test di espirazione forzata Interpretazione

Indici Funzionali	Insufficienza ventilatoria di tipo restrittivo	Insufficienza ventilatoria di tipo ostruttivo
CVF (FVC) Capacità Vitale Forzata	Diminuita	Normale o diminuita
VEMS <i>(FEV1)</i> Volume Espiratorio Massimo nel primo Secondo	Diminuito in modo proporzionale alla CVF	Diminuito più della CVF
VEMS/CVF % (FEV1/FVC%)	Normale	Diminuito

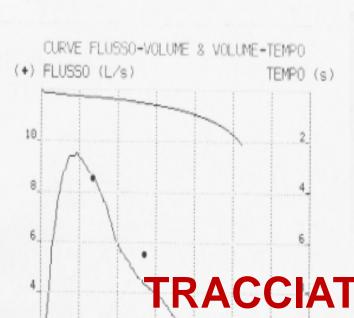
PARAMETR	0	PRE	TEORICO	%TEOR1CO
FVC	L	4.66	4.98	94
FEV1	L	3.96	4.22	94
FEV1%	%	85.0	82.7	103
PEF	L/s	9.23	9.70	95
FEF2575	L/s	4.05	4.98	81
FEF25%	L/s	7.83	8.25	95
FEF50%	L/s	4.28	5.43	79
FEF75%	L/s	1.82	2.52	72

SPIROMETRIA NELLA NORMA

FVC 4.660 = 94% FEV1 3.960 = 94% FEV1/FVC 85

TEORICI •

(=) VOLUME (L)



ETA' 29 STATURA cm 182 SESSO & PESO Kg 68

TEORICO ERS (ECCS) % TEORICO IN USO 100%

PRE FILE N° 603

PARAMETR	80	PRE	TEORICO	%TEORICO
FVC	L	5.27	5.39	98
FEV1	L	4.37	4.50	97
FEV1%	%	82.9	82.0	101
PEF	L/s	9.40	10.08	93
FEF2575	L/s	4.29	4.98	86
FEF25%	L/s	8.34	8.63	97
FEF50%	L/s	4.25	5.65	75
FEF75%	L/s	2.03	2.65	77

TRACCIATO NON ACCETTABILE

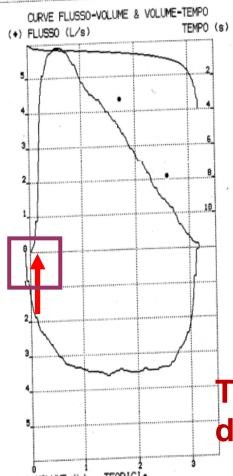
VALORI MIGLIORI

(=) VOLUME (L)

HIUSURA PRECOCE DELLA GLOTTIDE

10

CONGRES NAZIONA


TEORICI .

ETR' 24 STATURA cm 158 SESSO 9 PESO Kg 53

TEORICO ERS (ECCS) % TEORICO IN USO 100%

PRE FILE N° 374

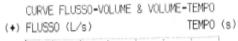
PARAMETR	PARAMETRO		RAMETRO PRE		TEORICO	%TEORI
FVC	L	3.19	3.46	92		
FEV1	L	2.80	3.01	93		
FEV1%	%	87.8	84.4	104		
PEF	L/s	5.83	6.83	85		
FEF2575	L/s	3.44	4.04	-85		
FEF25%	L/s	5.34	6.06	88		
FEF50%	L/s	3.62	4.40	82		
FEF75%	L/s	1.49	2.14	70		
FEV6	L					
FEV1/FE	/6 %					
FET	s	3.88		1		
VEXT	mL.	90				
FIVC	L	3.25	3.46	94		
FIV1	Ĺ	3.21	3.01	102		
FIV1%	%	98.8	84.4	117		
PIF	L/s	3.57	6.83	52		

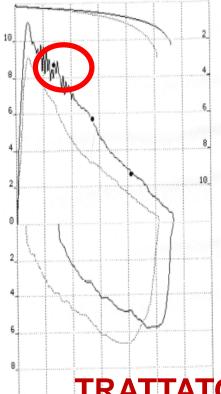
97.0 (***	4.4 4.44.4.		ALORI M	IGLIORI	
		M.	ISURATI	TEOR.	%TEOR.
	FVC FEV1 PEF L FEV1%	L L /s %	3.19 2.80 5.83 87.8	3.46 3.01 6.83 84.4	92 93 85 104

TRACCIATO ACCETTABILE (volume di estrapolazione 90 ml

SPIROMETRIA NORMALE

ETA 26 STATURA cm 183 SESSO & PESO Kg 76


PRE FILE N° 142


TEORICO ERS (ECCS) % TEORICO IN USO 190% POST FILE Nº 143

DOSE 400

10

RAPPORTO SPIROMETRICO MIGLIOR TEST

PARAMETRO	PRE	%TEOR.		%TEOR.	%CHG
FVC L FEV1 L FEV1% % PEF L/s FEF2575 L/s FEF25% L/s		93 86 94 88 67 74 58			
FEF50% L/s FEF75% L/s	1.70	62	3.07	111	+81

(VALORI MI	GLIORI	
		POST	PRE	%CHG
ı	FVC	L 5.68	5.13	+11
	FEV1	L 4.82	3.99	+21
	PEF L/	0 10111	9.02 27.8	•22 • 9
	FEV1%	% 84.9	//.0	

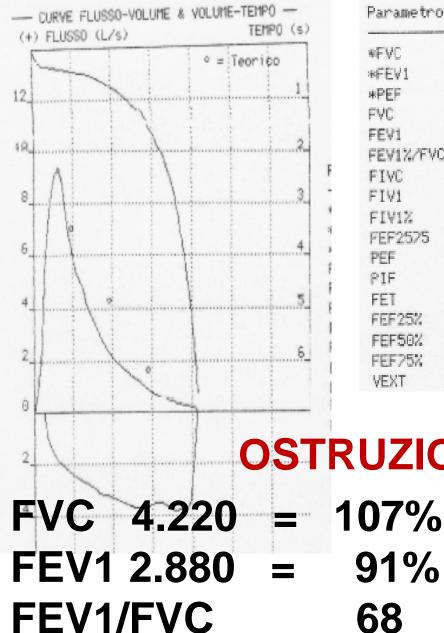
TRATTATO ACCETTABILE **ECCESSO DI TESSUTO MOLLE**

(-) VOLUME (L) RIETTROFARINGEO

ETA' 38 STATURA cm 120 SESSO & PESO Kg 80 TEORICO ERS (ECCS) % TEORICO IN USO 100% PRE FILE Nº 47 RAPPORTO SPIROMETRICO MIGLIOR TEST CURVE FLUSSO-VOLUME & VOLUME-TEMPO (+) FLUSSO (L/s) TEMPO (s) 10 10

9	PARAMETRO		PRE	TEORICO	%TEORICO
	FVC FEV1 FEV1% PEF FEF2575 FEF25%	L % L/s L/s L/s	4.85 4.03 83.1 9.34 4.30 7.16	4.46 3.72 80.4 8.95 4.36 7.71	109 108 103 104 99
	FEF50% FEF75%	L/s L/s	4.24 1.96	4.91 2.11	86 93

	VAL	LORI MIG	LIORI	
	MIS	URATI	TEOR.	%TEOR.
FVC	L	4.85	4.46	109
FEV1	_	4.03	3.72	108
PEF L	_	9.34	8.95	104
FEV1%	%	83.1	80.4	103


SPIROMETRIA NELLA NORMA

(=) VOLUME (L) TEORICI•

Parametr	0	Misurato	Teorico	%Teorice
*FVC	L	4.22	3,93	107
*FEV1	L	3.12	3.18	98
*PEF	L/s	9.38	8.17	115
FVC	L	4.22	3.93	102
FEV1	L	2,88	3.18	91
FEV1%/FV	C %	68.2	22.9	88
FIVC	L	3.94	3.93	100
FIV1	L	3.94	3.18	124
FIV1%	7.	100.0	77.9	128
FEF2575	1/5	1.71	3.20	46
PEF	L/s	9,38	8.17	115
PIF	L/5	3.88		
FET	\$	5.80		
FEF25%	L/3	5.38	7.14	75
FEF50%	1/8	1.92	4.36	44
FEF75%	L/5	.66	1.66	40
VEXT	mL	180		

OSTRUZIONE DI GRADO LIEVE

91%

68

02 SEX: FEMALE AGE: 64 YRS HT: 160 cm WT: 95 kg 100 % RACE: WHITE POST-BD-PRE-BD MEAS %PR FUNCTION 2.77 109 3.01 2.53 FVC 1.24 1.26 FEV.5 1.70 80 1.72 2.12 FEV1 2.22 FEV3 76.8 59.6 78 FEV1%T 61.4 FEV1%G 77.9 FEV3%T 77.1 FEV3%G 80.1

2.38

11.09

0.05

2.75 0.73

MEFR

MMEF

V EXT

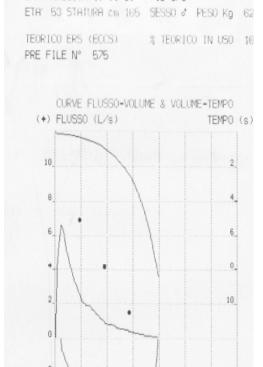
EX TIME

MEAS %CH 2.27 - 30.65 -10

12.12

0.08 60

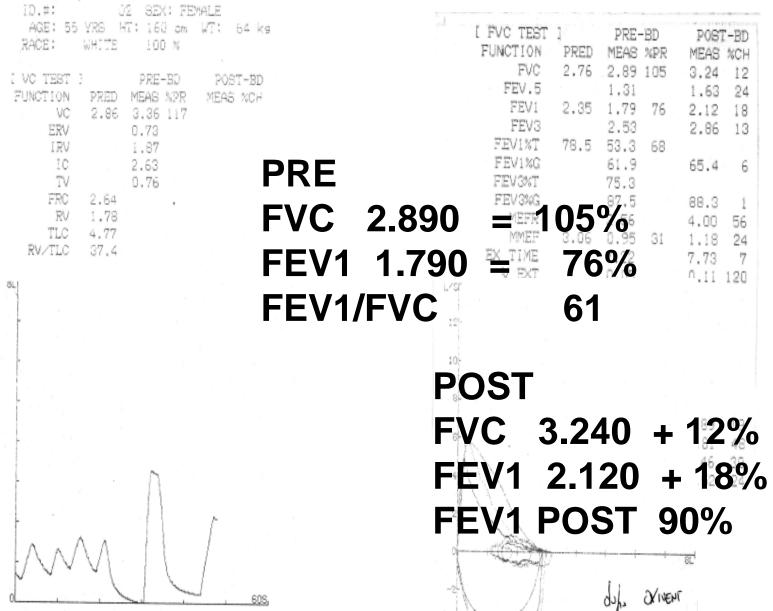
12


10-

PRE FVC 2.770 = 109%FEV1 1.700 =80% FEV1/FVC 60

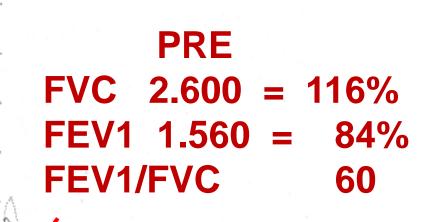
POST FVC 3.010 + 10% FEV1 1.720 + 1% FEV1/FVC 57

OSTRUZIONE DI GRADO LIEVE NON REVERSIBILE


PARAMETR	10	PRE	TEOR1CO	%TEOR1CO
FVC	L	3.98	3.79	105
FEV1	L	2.01	3.07	65
FEV1%	%	50.5	77.7	65
PEF	L/s	6.60	8.00	83
FEF2575	L/s	.85	3.62	23
FEF25%	L/s	2.02	7.00	29
FEF50%	L/s	.84	4.26	20
FFF75%	1/8	31	1.59	19

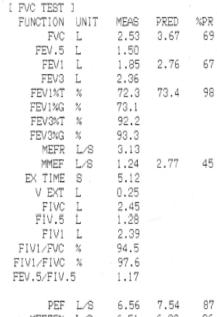
OSTRUZIONE DI GRADO MODERATO

OSTRUZIONE DI GRADO LIEVE COMPLETAMENTE




REVERSIBILE

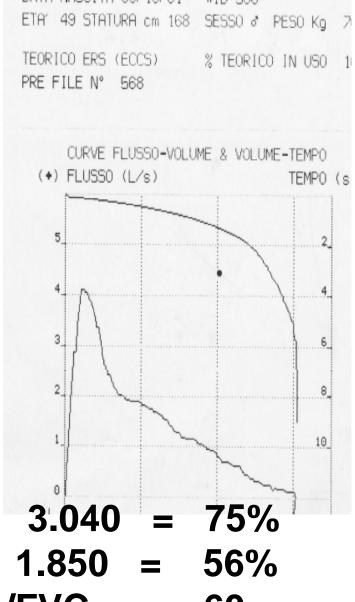
ID.#: AGE: 68)1 SEX			52 ki
	WHITE				
i FVC TEST	1	PRE-	-BD	POST	-BD
FUNCTION	PRED	MEAS	%PR	MEAS	%CH
FVC	2.25	2.60	116	3.29	27
FEV.5		1.17		1.50	29
FEV1	1.86	1.56	84	1.96	26
FEV3		2.13		2.60	22
FEV1%T	76.0				
FEV1%G		60.0		59.6	0
FEV3%T					
FEV3%G		81.9		79.0	-3
MEFR		2.04		3.57	
MMEE	2.57	0.71	28	0.76	7
EX TIME		12.36		13.50	9
V EXT		0.05		0.08	40
FIVC					


OSTRUZIONE DELLE VIE AEREE DI GRADO **MODERATO REVERSIBILE**

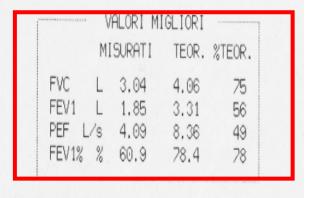
ID.#: 1 SEX: MALE AGE: 77 YRS HT: 174 cm WT: RACE: WHITE 100 %	65 kg
[VC TEST]	
FUNCTION UNIT MEAS PRED	%PR
VC L 2.56 3.81	67
ERV L 1.56	
IRV L 0.27	
IC L 1.00	
TV L 0.73	
FRC L 3.69	
RV L 2.74	
TLC L 6.83	
RV/TLC % 43.6	

42 39

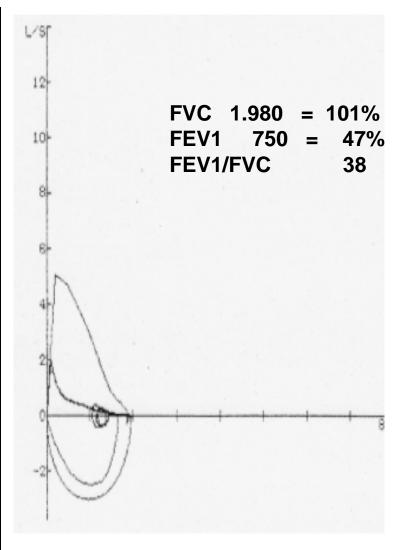
FVC 2.530 = 69%FEV1 1.850 = 67%


FEV1/FVC

POSSIBILE RESTRIZIONE DI GRADO MODERATO


L/SF

FVC 3.040 FEV1 1.850 FEV1/FVC **60**

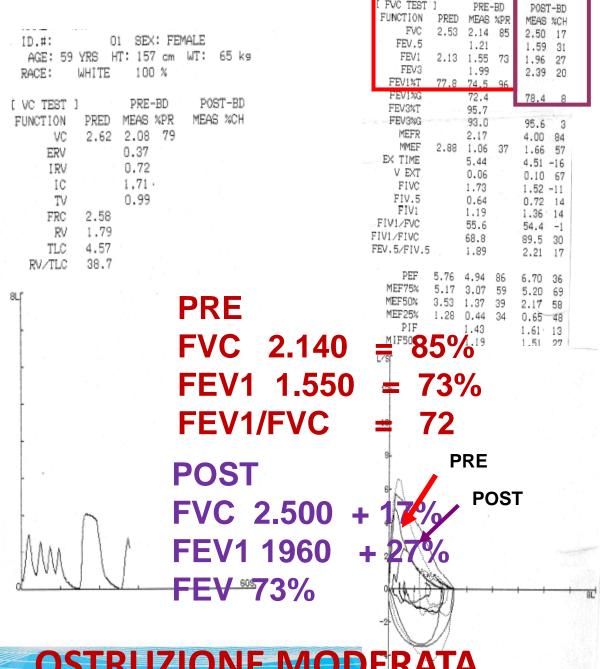

SINDROME PARAMETRO **OSTRUTTIVA DI** FVC FEV1 GRADO FEV1% MODERATAMEN PEF FEF2575 L/s TE91GRAVE26 FEF25% FEF50% POSSIBILE FEF75% CONCOMITANTE

COMPONENETE RESTRITTIVA LIEVE

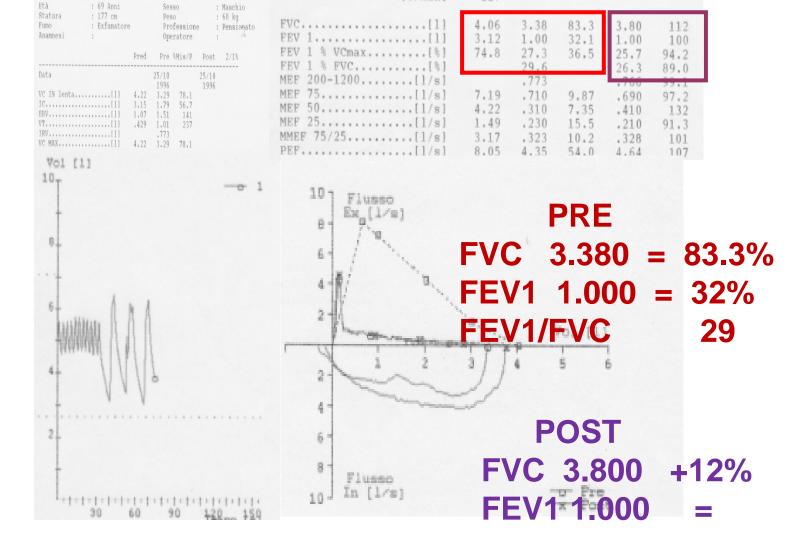
ID.#: AGE: 69 RACE:	YRS H		om WT:	
FVC TEST FUNCTION FVC FEV.5 FEV1 FEV3 FEV1%T FEV1%G	UNIT L L L	0.51	PRED 1.96 1.60 75.9	101
FEV3%G FEV3%G MEFR MMEF	% L/S L/S L L L L % %	65.2 0.42 0.24 11.29 0.03	2.46	10
MEF75% MEF50% MEF25%	L/S	1.96 0.57 0.31 0.10	4.70	12 10

OSTRUZIONE DI GRADO GRAVE

PRE-BD POST-BD FUNCTION PRED MEAS %CH FVC 2.18 1.77 ID.#: 01 SEX: FEMALE 10 FEV.5 AGE: 69 YRS HT: 155 cm WT: 64 kg 0.74 16 FEV1 1.80 WHITE 100 % 0.84 1.01 20 FEV3 1.44 13 FEV1%T [VC TEST PRE-BD POST-BD 44.9 FEV1%G FUNCTION PRED MEAS %PR MEAS %CH 47.5 52 1 2.29 1.87 82 LEVOVI 67.4 **ERV** FEV3%G 71.2 **PRE** 74.2 IRV MEFR 0.40 ΙĊ 0.65 65 **FVC** 1.770 2.52 0.26 0.33 11.45 FRC FEV1 0.840 2.55 13.58 19 0.10 RV 1.91 FEV1/FVC 47 TLC 4.44 RV/TLC 42.1


OSTRUZIONE GRAVE

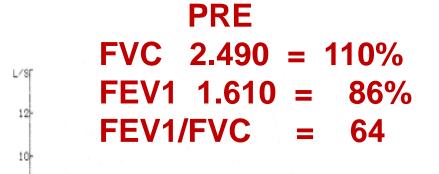
OLF



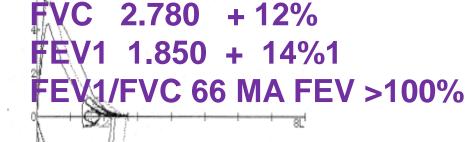
FVC TEST 1

OSTRUZIONE MODERATA

OSTRUZIONE DI GRADO MOLTO GRAVE NON REVERSIBILE

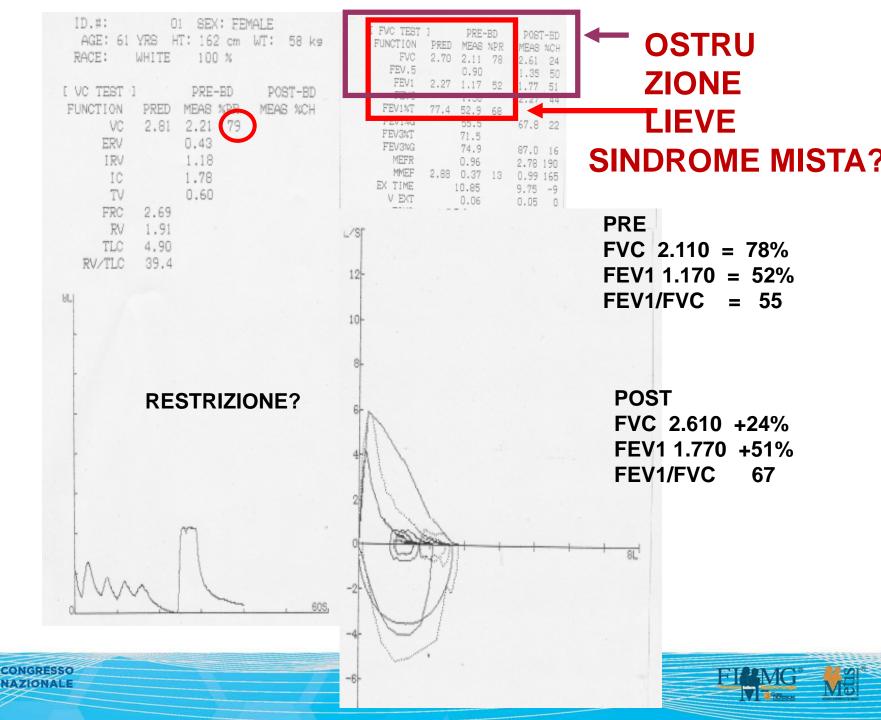


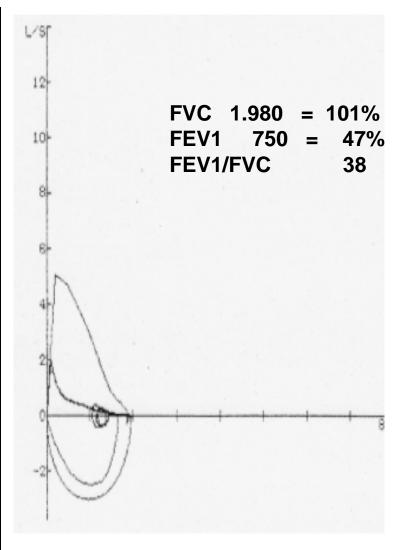
ID.#: 01 SEX: FEMALE


AGE: 69 YRS HT: 157 cm WT: 60 kg

RACE: WHITE 100 %

[FVC TEST]	PRE-BD	POST-BD
FUNCTION PR	ED MEAS %PR	MEAS %CH
FVC 2.	.27 2.49 110	2.78 12
FEV.5	1.25	1.46 17
FEV1 1.	.88 1.61 86	1.85 14
FEV3	2.07	2.35 13
FEV1%T 75	5.9	
FEV1%G	64.7	66.5 3
FEV3%T		
FEV3%G	83.1	84.5 2
MEFR	2.38	3.45 45
MMEF 2.	54 0.78 31	0.94 19
EX TIME	10.45	8.43 -18
11 -0-	0.10	0.00


POST


OSTRUZIONE DI GRADO LIEVE TOTALMENTE REVERSIBILE

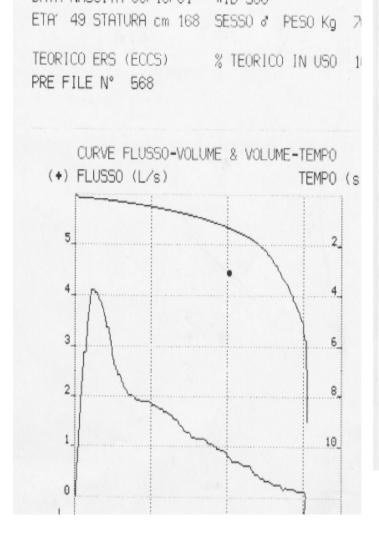
ID.#: AGE: 69 RACE:	YRS H		om WT:	
FVC TEST FUNCTION FVC FEV.5 FEV1 FEV3 FEV1%T FEV1%G	UNIT L L L	0.51	PRED 1.96 1.60 75.9	101
FEV3%G FEV3%G MEFR MMEF	% L/S L/S L L L L % %	65.2 0.42 0.24 11.29 0.03	2.46	10
MEF75% MEF50% MEF25%	L/S	1.96 0.57 0.31 0.10	4.70	12 10

OSTRUZIONE DI GRADO GRAVE

PRE-BD POST-BD FUNCTION PRED MEAS %CH FVC 2.18 1.77 ID.#: 01 SEX: FEMALE 10 FEV.5 AGE: 69 YRS HT: 155 cm WT: 64 kg 0.74 16 FEV1 1.80 WHITE 100 % 0.84 1.01 20 FEV3 1.44 13 FEV1%T [VC TEST PRE-BD POST-BD 44.9 FEV1%G FUNCTION PRED MEAS %PR MEAS %CH 47.5 52 1 2.29 1.87 82 LEVOVI 67.4 ERV FEV3%G 71.2 **PRE** 74.2 IRV MEFR 0.40 ΙĊ 0.65 65 **FVC** 1.770 2.52 0.26 0.33 11.45 FRC FEV1 0.840 2.55 13.58 19 0.10 RV 1.91 FEV1/FVC 47 TLC 4.44 RV/TLC 42.1

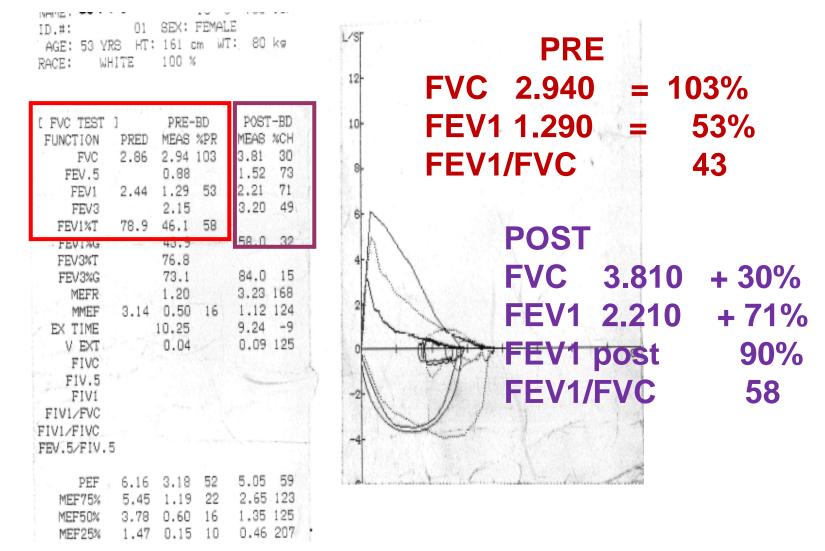
OSTRUZIONE GRAVE

OLF



Capacità Vitale Forzata F(l/s) BEST #22 - 20/03/2012 11: 13 : 12 Capacità Vitale Forzata Parametro Descrizione TEST#22 %Teor. 10 1.38 44.1 Best FVC **FVC** migliore **FVC** Capacità Vitale Forzata 1.38 44.1 51.8 FEV1 Volume Espirato dopo 1 sec 1.17 PEF 70.3 Picco di Flusso Espiratorio PIF 4.69 Picco di Flusso Inspiratorio MEF75% 71.6 84.6 FEV1/FVC% FEV1 come percentuale dell'FVC 118.3 71.6 63.0 88.0 FEV1/VC% FEV1 come percentuale della VC Flusso Esp. medio 25%-75% FVC 55.6 2.24 1.24 6.23 3.88 62.2 MEF75% Flusso Esp. al 25% della FVC MEF50% MEF50% 3.36 1.70 50.5 Flusso Esp. al 50% della FVC Flusso Esp. al 75% della FVC 0.81 0.47 58.6 MEF25% l/sec 2.7 Tempo di Espirazione Forzata MEF25% FET100% PEFr Picco di Flusso Espiratorio (I/min) 407.1 286.1 70.3 FVC 24 -3 4 -5 -**FVC 1.380** = 44.1%-6 FEV1 1.170 51% FEV1/FVC 84.6

RESTRIZIONE DI GRADO GRAVE


FVC 3.040 = 75% FEV1 1.850 = 56% FEV1/FVC 60

	V	ALORI MI	GLIORI	
	MI	SURATI	TEOR.	%TEOR.
FVC FEV1 PEF L FEV1%	L /s %	3.04 1.85 4.09 60.9	4.06 3.31 8.36 78.4	75 56 49 78

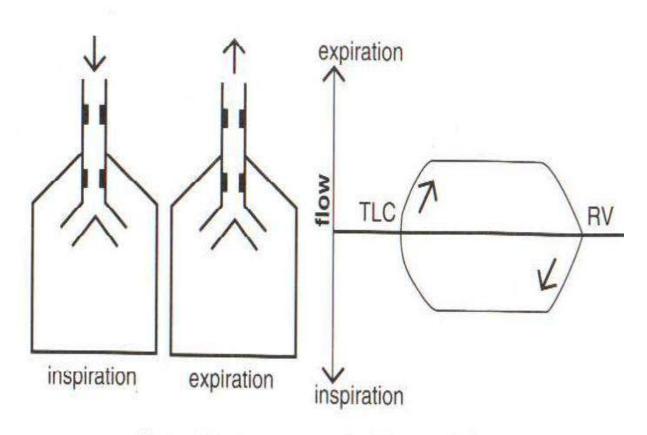
PARAMETRO		PRE	TEORICO	%TEORICO				
	FVC	L	3.04	4.06	75			
	FEV1	L	1.85	3.31	56			
	FEV1%	%	60.9	78.4	78			
	PEF	L/s	INDR	0.00	49			
	FEF2575	L/80	STRU	JTŢĮV	4 D J			
	FEF25%		RAD		26			
	FEF50%	—			MENTE			
	FEF75%				29			
		G	RAVI	***/	20			
POSSIBILE								
CONCOMITANTE								
	COMPONENETE							
RESTRITTIVA LI					A LIEVI			

OSTRUZIONE DI GRADO MODERATAMENTE GRAVE (FEV1 53)

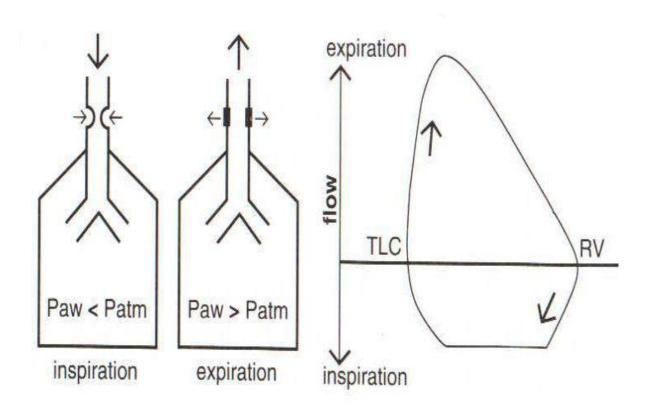

```
ID.#:
               HT: 174 cm WT: 65 kg
                   100 %
[ VC TEST ]
 FUNCTION UNIT
                                %PR
                  MEAS
                  2.56
                         3.81
      ERV
                  1.56
                  0.27
                  1.00
                  0.73
                         3.69
                         2.74
      TLC L
                         6.83
   RV/TLC %
                         43.6
```

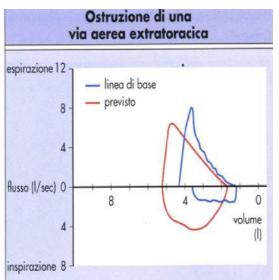
I FVC TES FUNCTIO FV FEV. FEV FEV FEV1%	N UNIT C L 5 L 1 L 3 L	MEAS 2.53 1.50 1.85 2.36 72.3	PRED 3.67 2.76 73.4	%PR 69 67 98	
FEV3% FEV3% MEF MME EX TIM V EX FIV. FIV. FIV1/FV FIV1/FIV FEV.5/FI	G %	92.2 93.3 3.13 1.24 5.12 0.25 2.45 1.28 2.39 94.5 97.6 1.17	2.77	45	
PE MEF75 MEF50 MEF25	% L/S % L/S	6.56 6.51 1.61 0.46	7.54 6.80 3.86 1.19	87 96 42 39	

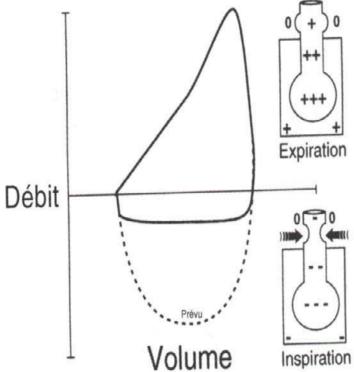
FVC 2.530 = 69% FEV1 1.850 = 67% FEV1/FVC = 73


POSSIBILE RESTRIZIONE DI GRADO MODERATO

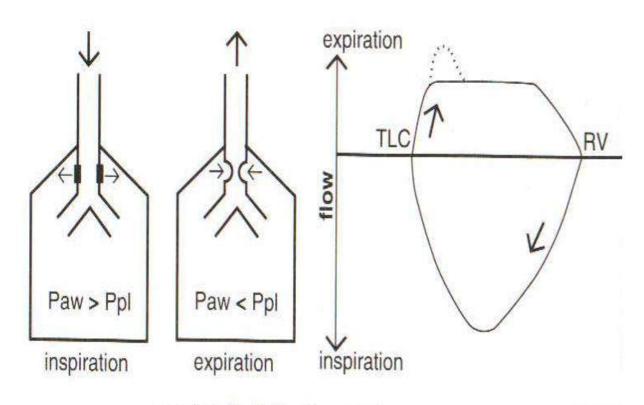
Quadri spirometrici rari


fixed (intra- or extrathoracic)

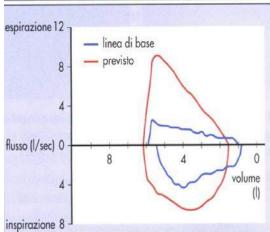

Quadri spirometrici rari

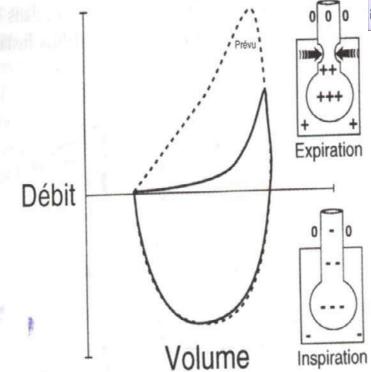


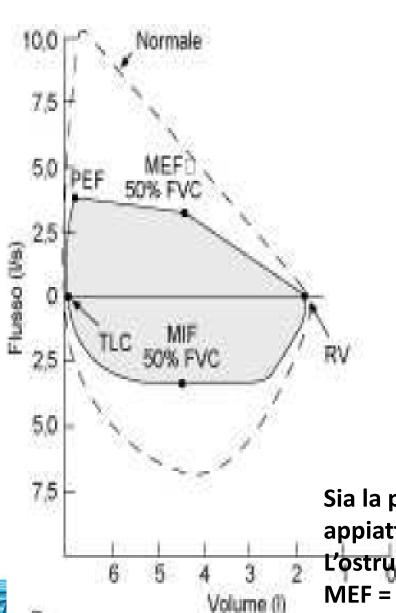
variable extrathoracic

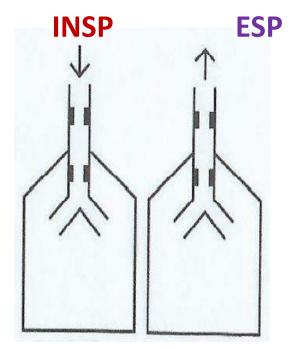


Quadri spirometrici rari



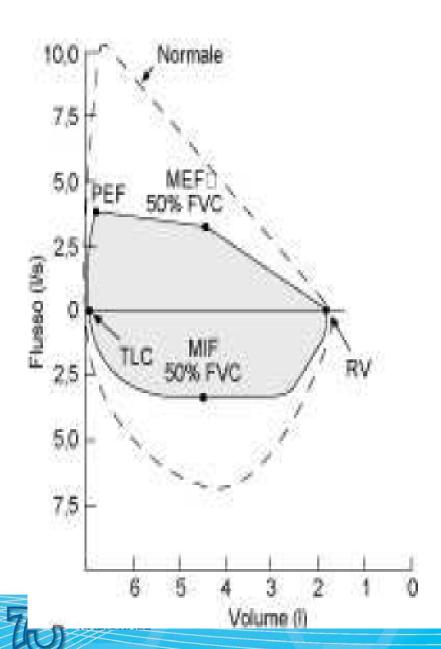

variable intrathoracic

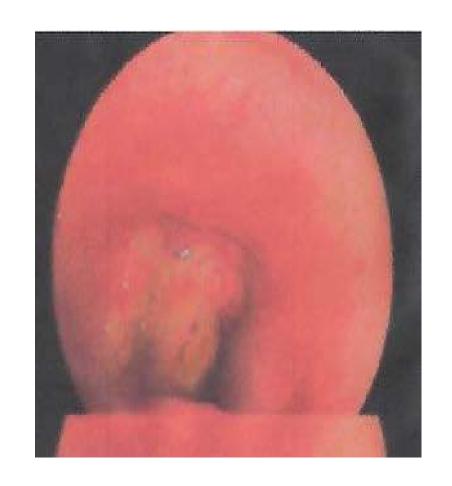

Ostruzione di una via aerea intratoracica di grosso calibro



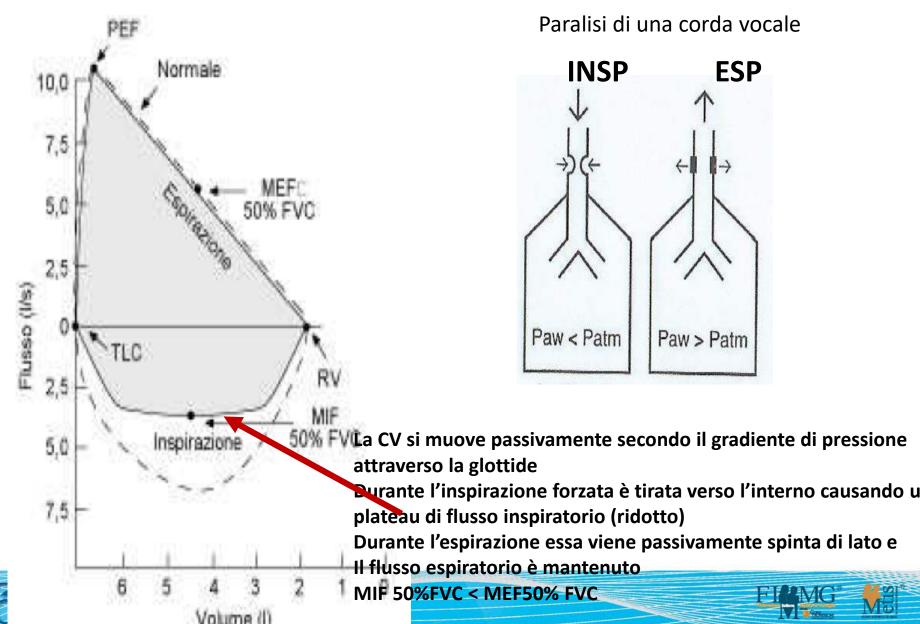
OSTRUZIONE FISSA DELLE VIE AEREE SUPERIORI

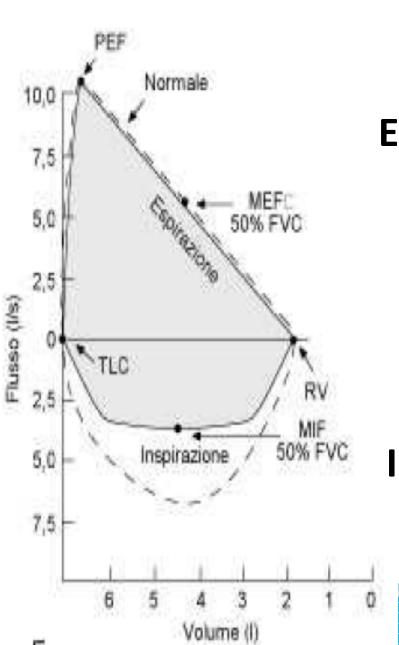
stenosi tracheale gozzo paralisi bilaterale delle corde vocali


Sia la parte inspiratoria che quella espiratoria sono appiattite


L'ostruzione limita i flussi sia a livello in- che espiratorio

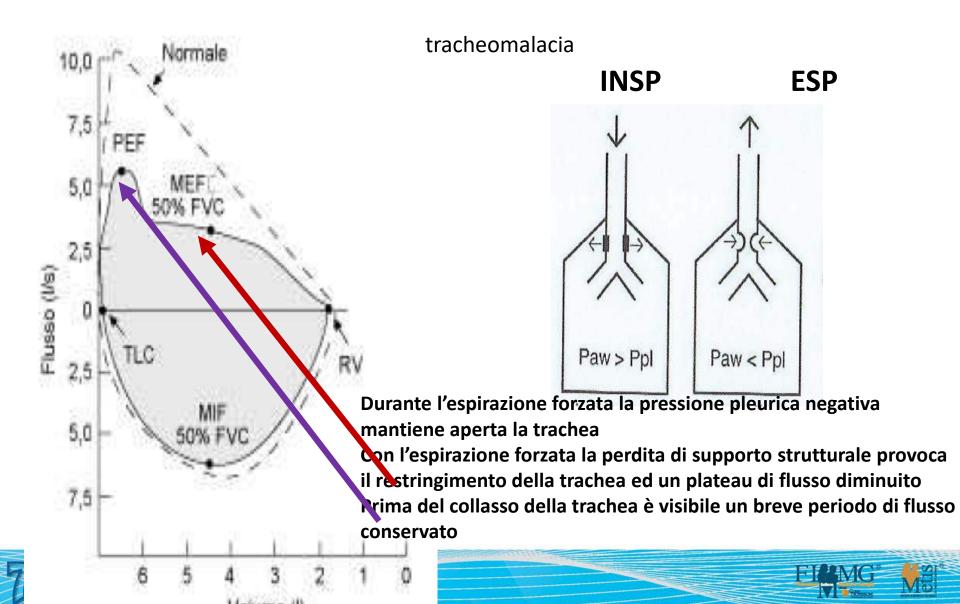
MEF = MIF

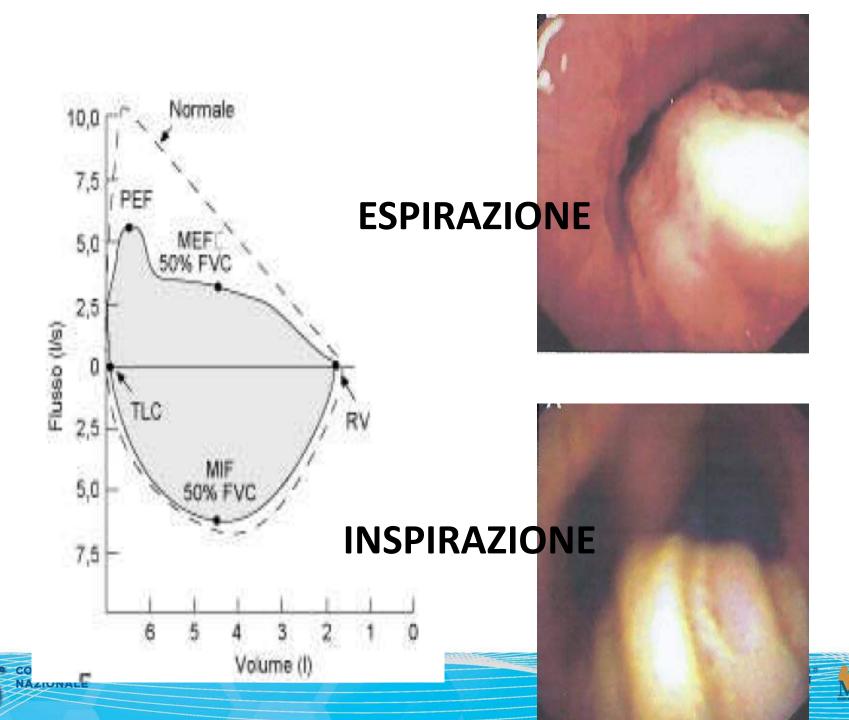


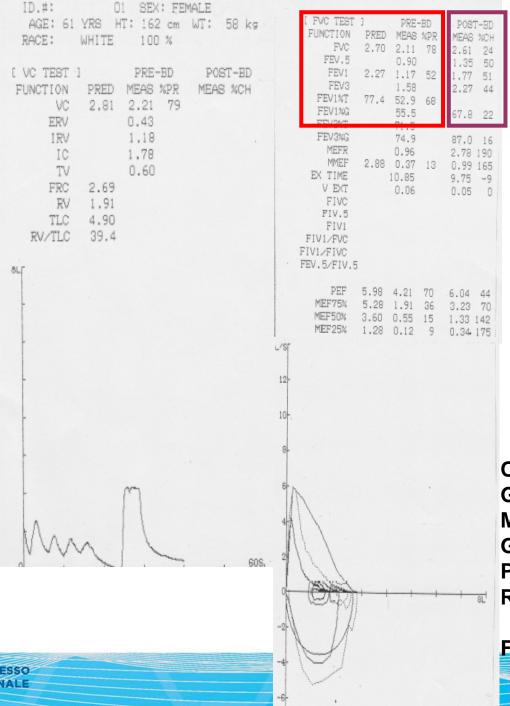


OSTRUZIONE VARIABILE EXTRATORACICA

ESPIRAZIONE

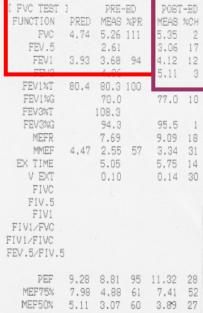


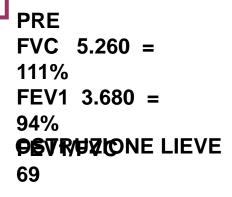




OSTRUZIONE VARIABILE INTRATORACICA

PRE FVC 2.110 = 78% FEV1 1.170 = 52% FEV1/FVC = 55


POST FVC 2.610 + 24% FEV1 1.770 + 51% FEV1/FVC 67


OSTRUZIONE DI GRADO MODERATAMENTE GRAVE PARZIALMENTE REVERSIBILE

FEV1 post < 80%

OU Expiration Débit ou Volume Inspiration

Ostruzione rigida di una via aerea di grosso calibro espirazione 12 Blusso (l/sec) 0 4 flusso (l/sec) 0 4 inspirazione 8

Grazie per l'attenzione

